$SERTP \ \ Southeastern \ Regional \ Transmission \ Planning$

November 26, 2025

Regional Transmission Plan & Input Assumptions Overview

Table of Contents

l.	SERTP Overview	3
II.	SERTP Transmission Planning Approach	8
III.	SERTP Regional Modeling	. 16
IV.	SERTP Regional Transmission Plan Summary	. 22
V.	SERTP Regional Transmission Plan	. 23
VI.	Appendix 1: AECI BAA	181
VII.	Appendix 2: Duke Energy Carolinas BAA	184
VIII	.Appendix 3: Duke Progress East BAA	194
IX.	Appendix 4: Duke Progress West BAA	209
Χ.	Appendix 5: LG&E/KU BAA	212
XI.	Appendix 6: Southern BAA	216
XII.	Appendix 7: TVA BAA	240

I. SERTP Overview

About the SERTP

The Southeastern Regional Transmission Planning (SERTP) process is a collaboration of nine (9) transmission planning entities in a twelve (12) state area that coordinates regional transmission planning activities and provides an open and transparent transmission planning forum to engage with stakeholders regarding transmission plans in the region. The SERTP region was initially developed by six (6) sponsors to provide an open and transparent regional transmission planning process and to otherwise comply with the Federal Energy Regulatory Commission's (FERC) Order 890, which was issued in 2007. The SERTP region expanded several times in size and scope. The SERTP region's implementation of FERC's Order 1000, issued in 2011, to establish regional and interregional transmission planning and cost allocation requirements, became effective beginning June 1, 2014. The SERTP region includes three (3) FERC jurisdictional investor-owned utilities and six (6) non-jurisdictional, non-profit public utilities, who have a longstanding history of collaboration in transmission planning activities and who have voluntarily elected to participate in the SERTP region. The expanded SERTP region is one of the largest regional transmission planning regions in the United States.

The SERTP Regional Transmission Plan

The SERTP provides an open and transparent transmission planning process. The SERTP transmission modeling, expansion plans, and other materials are publicly available and provide extensive data regarding the sponsors' transmission systems. Stakeholders can utilize this data to replicate the transmission planning performed through the SERTP as well as to assess a wide range of sensitivities and scenarios of interest.

This SERTP Regional Transmission Plan & Input Assumptions Overview document, which is produced annually, is intended to provide an overview of the 2025 cycle's regional modeling, key assumptions and philosophies, and expansion planning results suitable for any interested stakeholder, as it does not include Critical Energy Infrastructure Information (CEII) materials. Materials which include CEII are also available, subject to completion of the CEII request and certification process. Additional information is available through the SERTP website (http://www.southeasternrtp.com/).

The SERTP

Associated Electric Cooperative (AECI)

Associated Electric Cooperative Inc.

AECI, a Generation and Transmission (G&T) rural electric cooperative, provides electric service across approximately 75,000 square miles in three states. Headquartered in Springfield, Missouri, AECI serves approximately 875,000 ultimate members through six regional G&Ts and 51 distribution cooperatives. AECI and its six regional G&Ts own over 9,800 miles of transmission lines operated at 69 through 500 kV.

Dalton Utilities (Dalton)

Dalton Utilities provides electric services in Dalton, Georgia and five surrounding counties. Headquartered in Dalton, Georgia, Dalton Utilities serves approximately 18,000 customers and owns over 350 miles of transmission lines.

Duke Energy (Duke)

Duke Energy provides electric service across 95,000 square miles in 6 states. Headquartered in Charlotte, NC, Duke Energy serves approximately 7.3 million customers and owns over 19,000 miles of transmission lines.

Two Duke Energy subsidiaries, Duke Energy Carolinas and Duke Energy Progress, are represented on the SERTP.

Georgia Transmission Corporation (GTC)

GTC, an electric membership corporation formed in 1997 through a restructuring of Oglethorpe Power Corporation, provides electric service to 38 retail distribution cooperative members in Georgia. Headquartered in Tucker, Georgia, GTC owns approximately 3,150 miles of transmission lines and its members serve approximately 4 million people.

Louisville Gas & Electric and Kentucky Utilities (LG&E/KU)

LG&E/KU, an investor-owned utility, provides electric service across 6,100 square miles in two states. Headquartered in Louisville, KY, LG&E/KU serves approximately 940,000 customers and 2,700 miles of transmission lines.

Municipal Electric Authority of Georgia (MEAG)

MEAG, a public corporation and an instrumentality of the State of Georgia, provides electric service to 48 cities and one county in Georgia. Headquartered in Atlanta, Georgia, MEAG serves approximately 310,000 customers and owns over 1,320 miles of transmission lines.

PowerSouth Electric Cooperative (PowerSouth)

PowerSouth, a generation and transmission cooperative consisting of 16 distribution cooperatives and 4 municipal systems, provides electric service across 31,000 square miles in 2 states. Headquartered in Andalusia, Alabama, PowerSouth serves approximately 507,000 customers and owns over 2,300 miles of transmission lines.

Southern Company (Southern)

Southern Company, a leading U.S. producer of clean, safe, reliable, and affordable energy, includes three electric utility companies that provide electric service across approximately 120,000 square miles in three states. Headquartered in Atlanta, Georgia, Southern Company serves approximately 9 million electric customers and owns over 27,000 miles of transmission lines.

Tennessee Valley Authority (TVA)

TVA, a federally-owned electrical utility, provides electric service across 80,000 square miles in 7 states. Headquartered in Knoxville, TN, TVA serves approximately 10 million customers and owns over 16,400 miles of transmission lines.

SERTP Region Scope

The SERTP region is located within 12 states, roughly spanning over 600 miles north to south and 1,100 miles east to west. The SERTP region is one of the largest transmission planning regions in the Eastern Interconnection in terms of transmission line miles and based upon customer peak demand. The seven (7) NERC Balancing Authority Areas ("BAAs") in the SERTP region serve combined peak loads totaling more than 130,000 MWs.

Table I.1: State by State Breakdown of the SERTP

No. SERTP States 1 Alabama PowerSouth, Southern, TVA 2 Florida PowerSouth 3 Georgia Dalton, GTC, MEAG, Southern, TVA 4 Iowa AECI 5 Kentucky LG&E/KU, TVA 6 Mississippi Southern, TVA 7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA 12 Virginia LG&E/KU, TVA		•	-
2 Florida PowerSouth 3 Georgia Dalton, GTC, MEAG, Southern, TVA 4 Iowa AECI 5 Kentucky LG&E/KU, TVA 6 Mississippi Southern, TVA 7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	No.	SERTP States	SERTP
3 Georgia Dalton, GTC, MEAG, Southern, TVA 4 Iowa AECI 5 Kentucky LG&E/KU, TVA 6 Mississippi Southern, TVA 7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	1	Alabama	PowerSouth, Southern, TVA
4 Iowa AECI 5 Kentucky LG&E/KU, TVA 6 Mississippi Southern, TVA 7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	2	Florida	PowerSouth
5 Kentucky LG&E/KU, TVA 6 Mississippi Southern, TVA 7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	3	Georgia	Dalton, GTC, MEAG, Southern, TVA
6 Mississippi Southern, TVA 7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	4	Iowa	AECI
7 Missouri AECI 8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	5	Kentucky	LG&E/KU, TVA
8 North Carolina Duke, TVA 9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	6	Mississippi	Southern, TVA
9 Oklahoma AECI 10 South Carolina Duke 11 Tennessee TVA	7	Missouri	AECI
10 South Carolina Duke 11 Tennessee TVA	8	North Carolina	Duke, TVA
11 Tennessee TVA	9	Oklahoma	AECI
	10	South Carolina	Duke
12 Virginia LG&E/KU, TVA	11	Tennessee	TVA
	12	Virginia	LG&E/KU, TVA

II. SERTP Transmission Planning Approach

Physical Transmission Delivery Service Markets

The fundamental purpose of the transmission system is to enable transmission users the opportunity to access their desired generating resource options to reliably and economically deliver power to serve their customers' loads. In the SERTP region, physical transmission delivery service markets allow transmission customers to procure long-term transmission service across the transmission system and receive dependable, firm delivery from resources to customer loads. The SERTP sponsors plan and expand the transmission system to reliably and economically satisfy the load projections, resource assumptions, public policy requirements, and transmission service commitments within the region. These transmission system delivery capacity requirements are typically driven by long-term, firm commitments and are planned with the intent that those who have made such commitments will be able to access their resources to serve load without congestion, constraint, or curtailment. In other words, the SERTP sponsors identify, evaluate, and implement efficient and cost-effective transmission expansion options to provide sufficient physical capacity to enable delivery of a long-term, firm transmission customer's service without impacting other long-term, firm delivery commitments, and with the intent that the service will normally be available without interruption or curtailment. The physical transmission delivery service markets in the SERTP region not only help to provide certainty in long-term delivery costs, but also minimize delivery risks for transmission users. The resulting planned physical transmission capacity provides for a robust, reliable, and resilient transmission system which responds well under a wide range of operating uncertainties and supports routine maintenance and construction activities.

Integrated Resource Planning and Transmission Planning Interaction

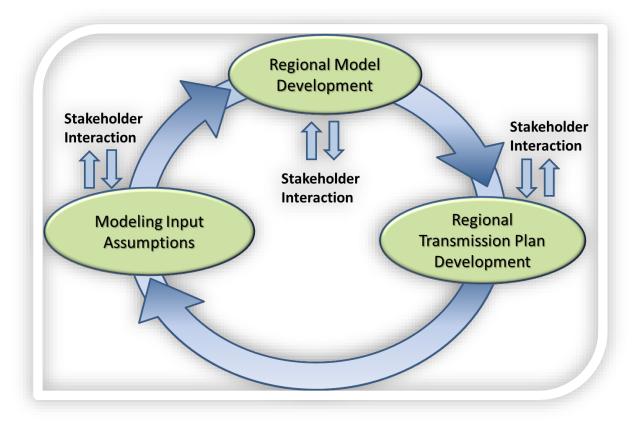
Although many long-term firm transmission delivery service commitments in the SERTP region are made by individual market participants, the majority are made by Load Serving Entities ("LSEs"). LSEs typically have a legal "duty to serve" obligation to reliably and proactively meet current and future load needs, and therefore procure energy, capacity, and transmission services to accomplish this objective. LSEs in the SERTP typically conduct Integrated Resource Planning ("IRP") processes on a reliable and least-cost basis to assess future load-serving needs, consider supply-side and demand-side options, and procure transmission delivery services. The IRP processes of LSEs, which are often state-regulated, consider a multitude of factors over a long-term horizon in their decisions to select resources and procure delivery services, including reliability, transmission impacts,

economics, environmental attributes, economic growth, energy efficiency, resource diversity, applicable regulations, fuel delivery, ancillary services, and construction lead-times. Specifically, LSEs use IRP processes to identify a cost-effective mix of supply-side and demand-side capacity resources to meet future requirements. The physical transmission delivery service markets in the SERTP region enable LSEs to base their decisions on long-term, total delivered costs without exposure to congestion pricing or significant delivery risks.

As LSEs make their resource decisions, these decisions and corresponding transmission service commitments are provided to the SERTP sponsors and form the basis for transmission planning assumptions in the SERTP region. Through their commitments for long-term, firm delivery service, LSEs communicate to the SERTP sponsors the set of resources their IRP processes have selected as best situated to serve their customers' long-term needs. This process significantly reduces uncertainties related to future resources and delivery needs and provides sufficient lead times to enable transmission facilities to be planned and constructed. The load forecasts, demand-side management programs, resource decisions, and corresponding firm transmission commitments resulting from the IRP activities of LSEs establish the majority of delivery obligations and modeling inputs for transmission planning in the SERTP region.

Customer Needs Lead to Continually Evolving Transmission Plans

Transmission planning in the SERTP region is focused on identifying reliable, cost-effective transmission projects to meet the long-term firm transmission delivery service obligations to transmission customers, and thereby assisting in serving their forecasted load obligations from their desired resource choices. Simply put, transmission plans are driven by customer transmission delivery service needs, and these needs can be constantly changing. Each year, load forecasts change, resource decisions change, and, as a result, transmission delivery service needs change. On a recurring basis, LSEs and other transmission customers communicate their delivery needs, which the SERTP incorporates into the latest transmission planning models and analyses. Planned transmission projects are reassessed to ensure that the proper scope and timing of the projects have been identified. Transmission projects are timed to coincide with delivery service needs; early enough to ensure physical capacity is in place to meet delivery commitments, but not so early as to incur significant carrying costs or limit flexibility if delivery needs change. Each year, planned transmission projects are often re-timed and, in some cases, eliminated.



Although the results of these planning efforts culminate annually into a regional transmission plan document, the regional transmission plan is continually re-evaluated as on-going changes in firm delivery service obligations, forecasted conditions, and identified-project alternatives arise. Therefore, the regional transmission plan is updated and improved upon on a recurring basis, often resulting in the identification of new cost-effective transmission project options, timing changes to existing transmission projects, and the potential removal of some transmission projects from the ten-year plan. This planning approach provides a seamless interaction with IRP processes such that as IRP decisions are made, the expected transmission impacts considered in those IRP decisions become reflected in the regional transmission plan, unless other, more cost-effective, reliable solutions have been identified for the then-current forecasted conditions. Similarly, the decisions of other types of market participants to procure long-term, firm transmission delivery service in the SERTP region are incorporated in the development of the regional transmission plan as well. These constantly changing customer needs drive a constantly changing regional transmission plan.

The SERTP develops a regional plan each year, but the plan is a "snapshot", solely intended to reflect the then-current transmission plan based upon then-current forecasted assumptions and transmission delivery service needs. Transmission planning is a very iterative process, with delivery needs and associated projects constantly evolving. From the start, transmission planning in the SERTP region reflects a high degree of coordination and joint modeling between neighboring systems. If reliability constraints are identified, the SERTP works to identify cost-effective, reliable transmission projects, not only on their respective transmission systems, but also considering potential transmission projects across two or more transmission systems. Transmission plans are shared with SERTP stakeholders at regular intervals during the year and the frequent engagement with stakeholders allows for additional inputs into potential project alternatives.

Diagram II.1 below illustrates the iterative nature of the SERTP process and the development of the regional transmission plan.

Diagram II.1: Iterative Regional Transmission Plan Development Process

Transmission Planning for Public Policy Requirements

In planning, constructing, operating, and maintaining the transmission system, the responsible transmission entities must meet all local, state, and federal laws/regulations applicable within their respective jurisdictions. These laws and regulations are referred to as public policy requirements ("PPRs"). The SERTP strives to meet all PPRs applicable to planning the transmission system. Although PPRs applicable to transmission planning vary by jurisdiction, some common examples of PPRs involving transmission planning include complying with applicable State Public Service Commission requirements, complying with Nuclear Regulatory Commission requirements related to offsite power, and planning consistent with applicable North American Electric Reliability Corporation ("NERC") Reliability Standards.

Although PPRs related to generating resource decisions are typically applicable to LSEs, these too can impact the development of the transmission plan. By offering physical transmission services, SERTP sponsors help facilitate applicable entities, such as LSEs, in meeting their PPR obligations related to resource decisions. As an example, assume a state-enacted PPR requires LSEs within the state to add additional renewable resources to their

generation mixes. An LSE, through its IRP analyses and processes, may determine that its most appropriate resource selection is to import renewable generation from a neighboring area. Alternatively, the LSE may determine that its most appropriate option is to interconnect new renewable generation locally. In either case, the LSE can provide its resource selection decisions through long-term, delivery service commitments to the SERTP sponsors, so that the SERTP can incorporate these input assumptions into the transmission expansion planning process to accommodate the delivery of the resource selections.

SERTP Regional Planning Process Timeline

As discussed earlier, the SERTP planning process is an iterative process that continually reevaluates the regional transmission plan based upon changes in actual and forecasted conditions. Often forecasted conditions can change, driven by inputs from native load and wholesale transmission customers such as their load-serving obligations and resource assumptions.

In light of these on-going changes, in a given planning cycle, transmission projects that may be included in the then-current regional plan are re-assessed by the SERTP sponsors, each applying its respective planning criteria, to determine: 1) if a given project continues to be needed, 2) if the timing of the projects should be adjusted, and 3) if potential alternatives exist that may be more reliable and cost-effective to address the underlying transmission capacity requirements.

Diagrams II.2 and II.3 below illustrate the approximate timing and objectives of the SERTP process. The flags in the diagram represent the quarterly meetings.

Diagram II.2: SERTP Process - Quarters 1 &2

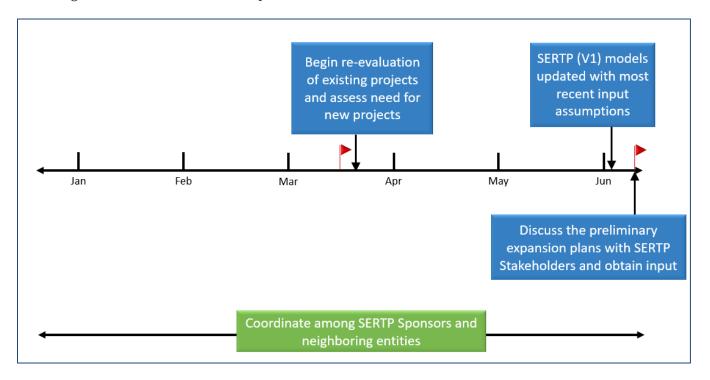
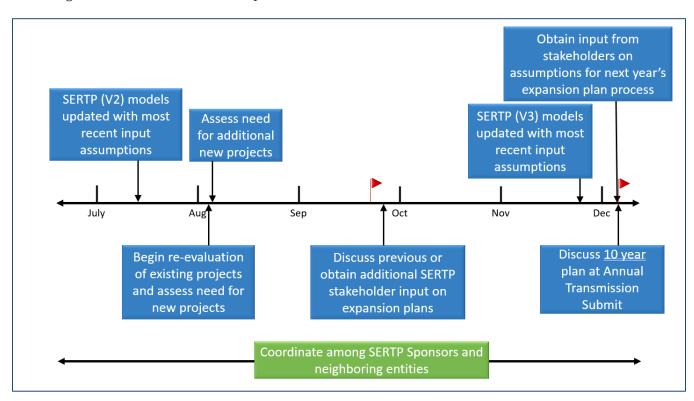



Diagram II.3: SERTP Process - Quarters 3 &4

The SERTP Region – A Robust, Reliable, Resilient Transmission System

The SERTP transmission planning approach has resulted in a robust transmission system intended to enable both native load and wholesale customers the right to use the underlying physical transmission capacity in the system associated with their long-term, firm transmission commitments. In fact, the SERTP region is one of the largest transmission planning regions in the Eastern Interconnection in terms of transmission line miles with approximately 89,880-line miles.

The 2025 regional transmission plan includes forecasted transmission projects to continue to reliably and cost-effectively provide for the transmission needs of the SERTP region. The planned physical transmission capacity provides for a continued robust, reliable, and resilient transmission system which responds well under a wide range of operating uncertainties and supports routine maintenance and construction activities.

Tables II.1 and II.2 below depict a snapshot of the major transmission expansion project types included in the regional transmission plan throughout the ten-year planning horizon.

Table II.1 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot

SERTP	Total
Transmission lines – New (Circuit Mi.)	1156.4
Transmission Lines – Uprates ¹ (Circuit Mi.)	2837.8
Transformers – New	8
Transformers – Replacements	10
Power Flow Control Devices	1
Static Compensators	2

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line

Table II.2 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage

FREE	100-120	121-150	151-199	200-299	300-399	400-550
SERTP	kV	kV	kV	kV	kV	kV
Transmission lines – New (Circuit Mi.)	120.7	0.0	164.5	280.0	0.0	591.2
Transmission Lines – Uprates¹ (Circuit Mi.)	1546.7	4.1	363.3	923.7	0.0	0.0
Transformers ² – New	1	0	0	7	0	4
Transformers ² – Replacements	10	0	0	9	0	2
Power Flow Control Devices	1	0	0	8	0	0
Static Compensators	0	0	2	0	0	0

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

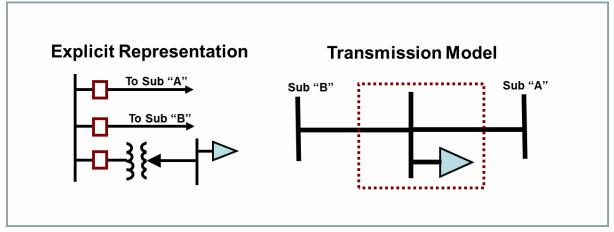
 $^{^{2}\,}$ The voltages shown represent the operating voltages on the high side terminals of the transformer.

III. SERTP Regional Modeling

Regional Model Development

The SERTP annually develops regional power flow models, which include the coordinated inputs and assumptions needed to support on-going regional transmission planning analyses. These models, which are available to SERTP stakeholders via the <u>secure area</u> of the SERTP website, are utilized by SERTP sponsors to perform regional transmission planning analyses and are also well suited to support SERTP stakeholders in conducting a wide range of scenarios and sensitivities that may be of interest. Table III.1 below provides a list of the 2025 series set of SERTP power flow models. Additional models may be developed on an "ad hoc" basis based upon the requirements of the then-current planning cycle.

Table III.1: 2025 Series set of SERTP Power flow Models


No.	Season	Year	MMWG Starting Point Model
1	Summer	2027	2026 SUM
2	Summer	2030	2029 SUM
3	Summer	2035	2034 SUM
4	Shoulder	2030	2029 SSH
5	Winter	2030	2029 WIN
6	Winter	2035	2034 WIN

The SERTP regional power flow models provide representations of the existing transmission topology plus forecasted topology changes throughout the ten-year planning horizon. In addition, these models incorporate the input assumptions provided by LSEs and other transmission customers for use in planning the transmission system.

The power flow models provide a comprehensive representation of the actual and forecasted transmission system so that simulations of the transmission system's ability to reliably accommodate firm delivery service commitments can be performed. The SERTP conducts interactive stakeholder training on modeling and analysis techniques each year intended to help stakeholders better understand and utilize the abundance of information provided in these materials. More information on previous training presentations can be found on the SERTP website. In the models, transmission lines, transformers, and substations are modeled as branches and nodes (buses). In general, radial transmission facilities only serving load with one source are typically not considered Bulk Electric System (BES) facilities and therefore, are not explicitly modeled.

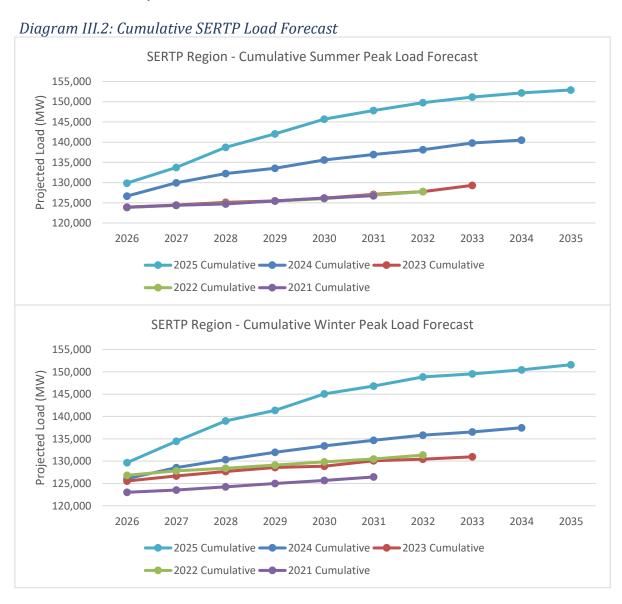
Diagram III.1 depicts a simple example of how an explicit substation representation might be reflected in the power flow models.

Diagram III.1: SERTP Power flow Model Substation Representation – Simple Example

The regional power flow models are considered and marked as Critical Energy Infrastructure Information (CEII). The Federal Energy Regulatory Commission defines CEII as being specific engineering, vulnerability, or detailed design information about proposed or existing critical infrastructure (physical or virtual) that:

- 1) Relates details about the production, generation, transmission, or distribution of energy
- 2) Could be useful to a person planning an attack on the critical infrastructure
- 3) Is exempt from mandatory disclosure under the Freedom of Information Act
- 4) Does not simply give the general location of the critical infrastructure

The SERTP models and other CEII materials are available to SERTP stakeholders, but are kept in the <u>secure area</u> of the SERTP website for the reasons discussed above. The process by which a stakeholder can obtain access to CEII can be found on the <u>SERTP website</u>.


Regional Modeling Input Assumptions

Vast amounts of data and information, such as the SERTP regional models, are available to all SERTP stakeholders, but are generally more geared towards an engineering audience. Therefore, the summaries below are intended to provide an overview of the modeling assumptions. Section III and Appendices 1-7 include detailed information on the input assumptions reflected in the regional power flow models and considered in the transmission planning process. The data shown is representative of the input assumptions

provided by LSEs and other transmission customers for specific use in planning the transmission system during the 2025 planning cycle.

Load Forecasts

LSEs, who are responsible for identifying and securing the firm transmission delivery services necessary to meet their current and forecasted load serving requirements, annually supply the SERTP sponsors with revised load forecasts. The SERTP incorporates the latest load forecasts from each LSE into the latest series of SERTP power flow models. Diagram III.2 provides cumulative load forecast trends by year for the SERTP region for each of the last five years.

The SERTP power flow models provide more detailed information on the forecasted load. The 2025 series SERTP power flow models are made available through the <u>secure area</u> of the SERTP website.

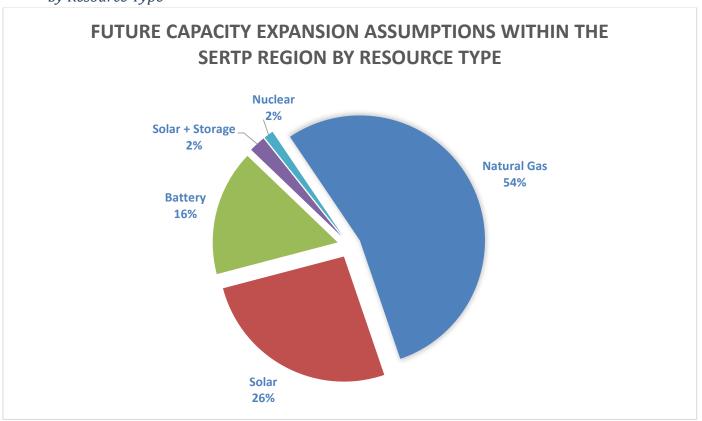
Energy Efficiency and Demand Side Management

The load forecasts provided by LSEs often reflect reduced load serving requirements for particular loads based upon energy efficiency ("EE") and demand side management ("DSM") options. Such options are developed as a part of each individual LSE's IRP processes on a state-by-state and program-by-program basis and therefore can vary in structure and operational characteristics. The transmission planning process in the SERTP necessarily plans for each LSE's loads consistent with their desired treatment of such loads. While each LSE may treat their load forecasting process and assumptions differently, the following describes the typical treatment of energy efficiency and demand side resources.

LSEs proactively seek out DSM options that are economical and of interest to customers. In many cases, such DSM options are setup and implemented under the purview of state-approved programs, and therefore the LSE treats the DSM options in its load forecasting process consistent with the parameters of such programs. Energy efficiency and non-dispatchable (passive) demand side resources are typically treated as load-modifying and are reflected in a reduced load forecast provided by the LSEs and incorporated in the SERTP transmission planning models. Dispatchable (active) demand side resources are accounted for and considered as part of the resource decisions that are provided by each LSE. LSEs often do not treat these demand side resources as load-modifying when supplying load forecast assumptions into the SERTP process because of a multitude of factors, including but not limited to:

- A significant number of exposure hours can greatly exceed the number of hours a DSM resource may be available;
- Relying upon active DSM to address transmission constraints can lead to response fatigue from customers and potential withdrawal from DSM programs; or
- The operational characteristics of active DSM resources may be insufficient to address transient transmission needs.

Generating Resources


The 2025 series SERTP power flow models available on the secure area of the SERTP website contain information on each of the generating resources connected within the SERTP

region as well as those that are planned to be connected within the ten-year planning horizon. Detailed tabular reports on such information can be created for the power flow models utilizing PSS/E software.

LSEs and market participants routinely make changes in their generation resource assumptions and associated transmission delivery service commitments. These changes can have many different drivers, including the selection of new resources, the retirement of generation, and the expiration of purchase power agreements. The SERTP reflects the latest generation resource assumptions, as provided by LSEs, in the then-current modeling and transmission planning analyses.

Appendices 1 through 7 depict changes in the generation resource assumptions that occur across the ten (10) year transmission planning horizon, including the year(s) in which they occur for each BAA in the SERTP region. Several of the changes in the generation resource assumptions represent capacity sourced from assumed generation expansion within the SERTP region. Diagram III.3 provides a breakdown, by resource type, of these generation expansion assumptions within the SERTP region.

Diagram III.3: Future Capacity Expansion Assumptions within the SERTP Region by Resource Type

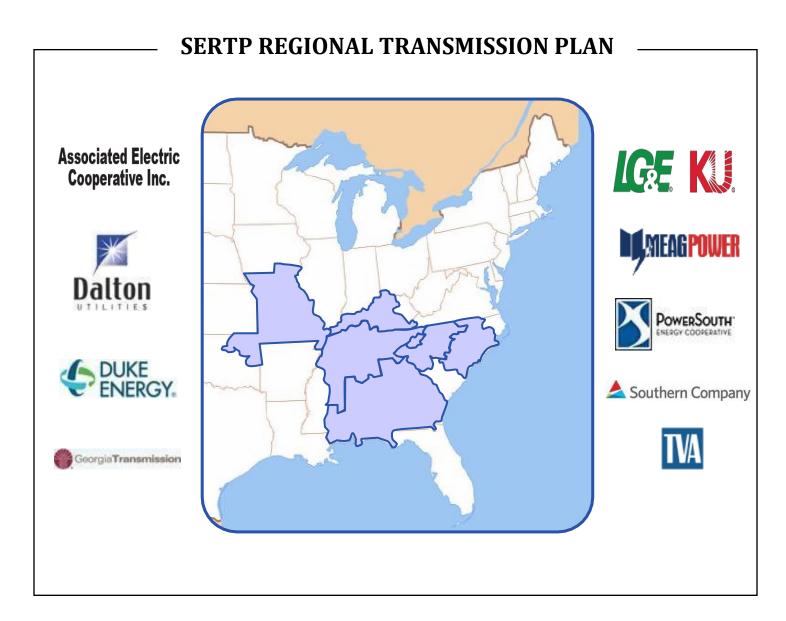
Generation assumptions within the SERTP region can also stem from long-term, firm point-to-point transmission service commitments. Additional information on long-term firm transmission service commitments considered in the 2025 SERTP process is available in Appendices 1 through 7 as well as on each SERTP sponsor's respective OASIS site.

Interface Commitments

In addition to the firm transmission delivery service commitments made by LSEs that source and sink within their NERC BAA, firm transmission delivery service commitments may exist that source and/or sink across two NERC BAAs. These commitments are called interface commitments. While interface commitments can stem from a number of drivers, many of these commitments are the result of LSEs opting to procure transmission capacity to receive deliveries from off-system resources to serve their loads. Other market participants may also utilize long-term, firm transmission delivery service to obtain delivery priority to access either committed or potential customers in other BAAs. The interfaces are also planned to maintain reliability margins to address uncertainties which may arise in real-time operations. Two types of reliability margins are 1) Transmission Reliability Margin ("TRM"), which is capacity preserved to provide reasonable assurance that the interconnected transmission network will be secure under the inherent uncertainty in real-time system conditions and 2) Capacity Benefit Margin ("CBM"), which is capacity preserved to enable LSEs access to generation from other interconnected systems to meet generation reliability requirements should times of emergency generation deficiencies arise.

Each SERTP sponsor plans the transmission system to accommodate all its long-term firm interface commitments including reliability margins. This planning, along with planning for other long-term firm commitments, has resulted in a highly integrated and robust network of ties within the SERTP region. Appendices 1 through 7 provide detail on the interface commitments modeled in the 2025 series SERTP regional power flow models. Additional information on the long-term firm transmission service interface commitments considered in the 2025 SERTP process is available on each SERTP sponsor's respective OASIS sites.

IV. SERTP Regional Transmission Plan Summary


Regional Plan Summary

The regional transmission plan represents the culmination of each year's planning cycle assessment, providing a "snapshot" of the transmission capacity requirements to safely, reliably, and economically serve the load within the SERTP region based upon the current resource assumptions of LSEs and other transmission customers. As described in Sections II & III, the regional transmission plan is continually assessed and may be revised based upon changes to these input assumptions.

The 2025 SERTP regional transmission plan, found in its entirety in Section V, consists of around 465 transmission projects, totaling an estimated \$17.6 billion dollars, including: over 1150 miles of new transmission lines, over 2830 miles of transmission line uprates (including upgrades, reconductors, and rebuilds), and 33 transformer additions and/or replacements. This planned physical transmission capacity provides for a continued robust, reliable, and resilient transmission system that responds well under a wide range of operating uncertainties and supports routine maintenance and construction activities. Tables II.1 and II.2 in Section II provide additional cumulative breakdowns on the regional transmission plan, while Appendices 1 through 7 depict tabular breakdowns for each BAA.

V. SERTP Regional Transmission Plan

November 26, 2025

APPENDICES TABLE OF CONTENTS¹

AECI Balancing Authority Transmission Projects	24
DUKE CAROLINAS Balancing Authority Transmission Projects	26
DUKE PROGRESS EAST Balancing Authority Transmission Projects	47
DUKE PROGRESS WEST Balancing Authority Transmission Projects	56
LG&E/KU Balancing Authority Transmission Projects	57
SOUTHERN Balancing Authority Transmission Projects	60
TVA Balancing Authority Transmission Projects1	70

¹ The projects described in this document represent the current ten-year transmission expansion plans. The transmission expansion plans are periodically reviewed and may be revised due to changes in assumptions. This document does not represent a commitment to build for projects listed in the future.

SERTP TRANSMISSION PROJECTS **AECI Balancing Authority Area**

In-Service

2026

Year:

Project Name: CROCKER SOUTH – LEBANON #2 161 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 24.48 mile-long Crocker South – Lebanon #2 161 kV transmission line with

795 ACSR at 100°C.

Supporting

Statements:

The Crocker South – Lebanon 161 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: GAINESVILLE #2 – BULL SHOALS 161 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 24.42 mile-long Gainesville #2 – Bull Shoals 161 kV transmission line with

795 ACSR at 100°C.

Supporting

Statements:

The Gainesville – Bull Shoals 161 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: MANSFIELD – GAINESVILLE #2 161 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 31.58 mile-long Mansfield – Gainesville #2 161 kV transmission line with

795 ACSR at 100°C.

Supporting

Statements:

The Mansfield – Gainesville 161 kV transmission line can overload under contingency.

SERTP TRANSMISSION PROJECTS **AECI Balancing Authority Area**

In-Service

2028

Year:

Project Name: MORGAN – BROOKLINE 161 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 26.49 mile-long Morgan – Brookline 161 kV transmission line with 795

ACSR at 100°C.

Supporting

Statements:

The Morgan – Brookline 161 kV transmission line overloads under contingency.

SERTP TRANSMISSION PROJECTS **DUKE CAROLINAS Balancing Authority Area**

In-Service

Year:

Project Name: BUSH RIVER TIE – LAURENS TIE 100 KV TRANSMISSION LINES, REBUILD

Description: Rebuild the full 29 miles of the Bush River Tie – Laurens Tie 100 kV double circuit

transmission line with 1158 ACSS/TW at 200°C. Part of the Red Zone 1 set of projects.

Supporting

Support future solar generation in the area and address potential contingency loading

Statements: conditions on the Bush River Tie – Laurens Tie 100 kV transmission line.

In-Service

2026

2026

Year:

Project Name: CLOVER TIE – CUSTOMER SUBSTATION 44 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 0.5 miles (structure 73.0 – Bethel Retail) of the Clover Tie – Customer

Substation to double circuit with 44 kV on one side and 100 kV on the other with 556 ACSR at 120°C. Convert 1.2 miles (Bethel Retail – Customer Substation) of the Clover

Tie.

Supporting

Statements:

44 kV voltages in the area can drop under extreme loading conditions.

In-Service

2026

Year:

Project Name: CRETO TIE – CORONACA TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild and add a second circuit to 13 miles of the single circuit Creto Tie – Coronaca

Tie 100 kV transmission line with 954 ACSR at 120°C.

Supporting

Statements:

The Creto Tie – Coronaca Tie 100 kV transmission line can overload under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: HANDS MILL SWITCHING STATION 230 KV, CONSTRUCT

Description: Construct a new Hands Mill 230 kV switching station along the Newport Tie – Catawba

Nuclear 230 kV transmission line.

Supporting Newport Tie – Catawba Nuclear 230 kV transmission line can overload under

Statements: contingency.

2026

In-Service

2026

Year:

Project Name: LEE STEAM STATION – SHADY GROVE TIE 100 KV TRANSMISSION LINE (PIEDMONT

CIRCUITS), REBUILD

Description: Rebuild the entire Lee Steam Station – Shady Grove 100 kV transmission line (Piedmont

circuits) with 1158 ACSS/TW at 200°C. Part of the Red Zone 1 Projects.

Supporting The Lee Steam Station – Shady Grove 100 kV transmission lines can overload under

Statements: contingency.

2026

In-Service

Year:

Project Name: LYLE CREEK SWITCHING STATION 100 KV, CONSTRUCT

Description: Construct a new Lyle Creek 100 kV switching station along the Hickory Tie – Lookout

Tie 100 kV transmission line.

Supporting

Statements:

Hickory Tie – Lookout Tie 100 kV transmission line can overload under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: PEACH VALLEY TIE – CLIFFSIDE 5 SWITCHING STATION 100 KV TRANSMISSION LINES,

REBUILD

2026

Description: Rebuild Peach Valley – Enola Retail (1.2 miles) of the Peach Valley Tie – Cliffside 5

Switching Station 100 kV with 954 ACSR at 120°C.

Supporting The Peach Valley Tie – Cliffside 5 Switching Station 100 kV transmission lines can

Statements: overload under contingency.

In-Service

2026

Year:

Project Name: SHATTALON SWITCHING STATION 100 KV, INSTALL

Description: Install a remedial action scheme at Shattalon Switching Station 100 kV.

Supporting The Rural Hall Tie – Shattalon Switching Station 100 kV transmission lines can overload

Statements: under contingency.

In-Service

2026

Year:

Project Name: SHELBY TIE – HILLTOP TIE 100 KV TRANSMISSION LINES, REBUILD

Description: Rebuild 3.2 miles (Customer Tap – Customer Tap) of the Shelby Tie – Hilltop Tie 100 kV

transmission lines with bundled 954 ACSR at 120°C.

Supporting

Statements:

The Shelby Tie – Hilltop Tie 100 kV transmission lines can overload under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: WYLIE SWITCHING STATION – WOODLAWN TIE 100 KV TRANSMISSION LINE,

RECONDUCTOR

2026

Description: Reconductor Wylie Tie – Arrowood Retail 100 kV (8 miles) of the Wylie Tie – Woodlawn

Tie 100 kV double circuit transmission line with bundled 477 ACSR at 120°C.

Supporting The Wylie Tie – Woodlawn Tie 100 kV transmission line can overload under

Statements: contingency.

In-Service

2027

Year:

Project Name: **BOYD SWITCHING STATION 230 KV, CONSTRUCT**

Description: Construct a new Boyd 230 kV switching station along the Marshall Steam Station –

Longview Tie 230 kV transmission line.

Supporting The Marshall Steam Station – Longview Tie 230 kV transmission line can overload

Statements: under contingency.

2027

In-Service

Year:

Project Name: BUSH RIVER TIE 115/100 KV AUTOTRANSFORMERS, REPLACE

Description: Replace existing 115/100 kV autotransformers 7 and 8 with new transformers. Project

is part of Red Zone 2.0.

Supporting Various generator interconnection studies have shown the need to upgrade this line.

Statements: This upgrade is needed to enable generation consistent with the approved IRP.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name:

DURHAM MAIN – ASHE ST SWITCHING STATION 100 KV TRANSMISSION LINE,

REBUILD

2027

Description: Rebuild the entire circuit of the Durham Main – Ashe St Switching Station 100 kV

transmission line with 1272 ACSR at 120°C. Due to line configurations in the area parts of the Durham Main – East Durham Tie and the East Durham Tie – Ashe St Witching

Station 100 kV will also be rebuilt.

Supporting

The Durham Main – Ashe St Switching Station 100 kV transmission line can overload

Statements: under contingencies.

In-Service

2027

Year:

Project Name: HAAS CREEK SWITCHING STATION 230 KV, CONSTRUCT

Description: Construct a new Haas Creek 230 kV switching station along the Orchard Tie – Longview

Tie 230 kV transmission line.

Supporting The Orchard Tie – Longview Tie 230 kV transmission line can overload under

Statements: contingency.

In-Service

2027

Year:

Project Name: LANCASTER MAIN – MONROE MAIN 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 23.8 miles of Lancaster Main – Monroe Main 100 kV double circuit

transmission line with 1158 ACSS/TW at 200°C.

Supporting

Lancaster Main - Monroe Main 100 kV transmission line can overload under

Statements: contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2027

2027

Project Name:

OAKBORO TIE - LILESVILLE TIE (DEP) 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 5.13 miles (Oakboro to DEP change of ownership) of the Oakboro Tie -

Lilesville Tie (DEP) 230 kV transmission line with bundled 1272 ACSR at 120°C. Project is

part of Red Zone 2.0.

Supporting

Various generator interconnection studies have shown the need to upgrade this line. This upgrade is needed to enable generation consistent with the approved IRP.

Statements:

In-Service

Year:

Project Name:

OAKVALE TIE – EAST GREENVILLE TIE 100 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 4.5 miles (East Greenville - Verdae Retail) of the Oakvale Tie - East Greenville

Tie 100 kV double circuit transmission line with 795 ACSS/TW at 200°C.

Supporting

The Oakvale Tie - East Greenville Tie 100 kV transmission line can overload under

Statements: contingency.

In-Service

Year:

Project Name: STONEWATER TIE – WESTFORK SWITCHING STATION 100 KV TRANSMISSION LINES,

REBUILD

2027

Rebuild 3 miles (Wildcat Tie – Westfork Switching Station) of the Stonewater Tie – Description:

Westford Switching Station 100 kV transmission line with 1272 ACSR at 120°C. Project

listed as conceptual in the local transmission plan.

Supporting

The Stonewater Tie – Westfork Switching Station 100 kV transmission line can overload

Statements:

under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: ASHE ST SWITCHING STATION – PARKWOOD TIE 100 KV TRANSMISSION LINE,

RECONDUCTOR

2028

Description: Reconductor 2.6 miles (Research Triangle Retail – Ellis Rd Retail) of the Ashe St

Switching Station - Parkwood Tie 100 kV transmission line with 795 ACSS/TW at 200°C.

Supporting

The Ashe St Switching Station – Parkwood Tie 100 kV transmission lines can overload

Statements: under contingency.

In-Service

2028

Year:

Project Name: BUSH RIVER TIE – CRETO TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 8 miles (Bush River Tie – Newberry PV) of the Bush River Tie – Buzzard Roost

100 kV transmission line with 1158 ACSS/TW at 200°C. Project is part of Red Zone 2.0.

Supporting Various generator interconnection studies have shown the need to upgrade this line.

Statements: This upgrade is needed to enable generation consistent with the approved IRP.

In-Service

Year:

)

2028

Project Name:

DIXON SCHOOL RD - CUSTOMER DELIVERY 230 KV TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 1.3 mile 230 kV transmission line from Dixon School Rd to a customer

delivery station with 954 ACSR at 120°C.

Supporting

Statements:

To support additional customer growth in the region.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: HARRISBURG TIE 230/100/44 KV AUTOTRANSFORMER, REPLACE

Description: Replace existing 230/100/44 kV autotransformer 3 with new larger autotransformers.

Supporting Statements:

Harrisburg Tie 230/100/44 kV autotransformer 3 can overload under contingency.

In-Service

2028

2028

Year:

Project Name: LAKEWOOD TIE – WOODLAWN TIE 100 KV TRANSMISSION LINES, REBUILD

Description: Rebuild 2 miles (Lakewood Tie – Remount Rd Retail) of the Lakewood Tie – Woodlawn

Tie 100 kV transmission lines with 795 ACSS/TW at 200°C. ACSS/TW conductor used is

considered an alternative transmission technology.

Supporting

The Lakewood Tie - Woodlawn Tie 100 kV transmission lines can overload under

Statements: contingency.

In-Service

2028

Year:

Project Name: LAWSONS FORK TIE – WEST SPARTANBURG TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 4 miles (Lawsons Fork Tie – Una Retail) of the Lawsons Fork Tie – West

Spartanburg Tie 100 kV transmission line with 1272 ACSR at 120°C.

Supporting

The Lawsons Fork Tie – West Spartanburg Tie 100 kV transmission line can overload

Statements: under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2028

Project Name:

LAWSONS FORK TIE - WEST SPARTANBURG TIE 100 KV TRANSMISSION LINES,

INSTALL RAS

Description:

Install a remedial action scheme on the Lawsons Fork Tie – West Spartanburg Tie 100

kV transmission lines. Will be retired once the Lawsons Fork Tie – West Spartanburg Tie

100 kV transmission lines rebuild project is complete.

Supporting

The Lawsons Fork Tie – West Spartanburg Tie 100 kV transmission lines can overload

Statements:

under contingency

In-Service

2028

Year:

Project Name: LEE CC – BELTON TIE 100 KV TRANSMISSION LINE, REBUILD

ACSS/TW at 200°C. Project is part of Red Zone 2.0.

Supporting

Description:

Various generator interconnection studies have shown the need to upgrade this line.

Rebuild the entire Lee CC - Belton Tie 100 kV transmission line (6.4 miles) with 1533

Statements: This upgrade is needed to enable generation consistent with the approved IRP.

In-Service

2028

Year:

Project Name: LEE CC – LEE STEAM 100 KV TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 100 kV busline between Lee CC and Lee Steam with 1158 ACSS/TW at

200°C.

Supporting

The Lee CC – Lee Steam Station 100 kV transmission lines can overload under

Statements:

contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: N GREENVILLE TIE AUTOTRANSFORMER 230/100/44 KV, REPLACE

Description: Replace existing bank 1 with new larger 230/100/44 kV autobank. Replace existing 230

kV and 44 kV oil breakers with gas breakers.

Supporting

Statements:

Existing N Greenville 230/100/44 kV tie bank 1 can overload under contingency.

In-Service

2028

2028

Year:

Project Name: NORTH GREENSBORO TIE – GREENSBORO MAIN 100 KV TRANSMISSION LINES,

REBUILD

Description: Rebuild both of the North Greensboro Tie – Greensboro Main 100 kV transmission lines

with 1158 ACSS/TW at 200°C.

Supporting The North Greensboro – Greensboro Main 100 kV transmission line can overload under

Statements: contingency.

2028

In-Service

Year:

Project Name: NORTH GREENVILLE TIE – PISGAH TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 11.5 miles (North Greenville Tie to Marietta Tie) of the North Greenville Tie –

Pisgah Tie 100 kV transmission line with 1272 ACSR at 120°C.

Supporting

The North Greenville Tie – Pisgah Tie 100 kV transmission line can overload under

Statements: contingencies.

SERTP TRANSMISSION PROJECTS **DUKE CAROLINAS Balancing Authority Area**

In-Service

2028

Year: Project Name:

SHELBY TIE 230/100/44 KV AUTOTRANSFORMER, REPLACE

Description: Replace existing 230/100/44 kV autotransformer 3 with a new larger autotransformer.

Supporting

Statements:

Shelby Tie 230/100/44 kV autotransformer 3 can overload under contingency.

In-Service

2028

Year:

Project Name: TIGER TIE AUTOTRANSFORMER, REPLACE

Description: Replace existing autotransformer 5 with a new larger autotransformer.

Supporting

Statements:

Tiger Tie autotransformer 5 can overload under contingency.

In-Service

2028

Year:

Project Name: WINECOFF TIE – CONCORD MAIN 100 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor the entire Winecoff Tie – Concord Main 100 kV transmission line (3.5

miles) with bundled 336 ACSR at 120°C.

Supporting

The Winecoff Tie – Concord Main 100 kV transmission lines can overload under

Statements:

contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: HARRISBURG TIE - CONCORD MAIN 100 KV TRANSMISSION LINES, REBUILD

Description: Rebuild 5.6 miles (Concord Main to Customer) of the Harrisburg Tie – Concord Main

100 kV double circuit transmission line with 1272 ACSR at 120°C.

Supporting The Harrisburg Tie – Concord Main 100 kV transmission lines can overload under

Statements: contingency.

In-Service

2029

2029

Year:

Project Name: **HODGES TIE SWITCHYARD 230KV, EXPANSION**

Description: Expand the 230 kV switchyard at Hodges Tie to a full breaker and a half layout. Install

an additional autotransformer.

Supporting The Hodges Tie – Belton Tie 100 kV transmission lines can overload under

Statements: contingencies.

In-Service

2029

Year:

Project Name: **MORNING STAR TIE 230 KV, EXPANSION**

Description: Expand the 230 kV switchyard at Morning Star Tie to a full breaker and a half

configuration and replace all three existing autobanks with new 230/100/44 kV

transformers.

Supporting

The addition of a second Newport Tie – Morning Star Tie 230 kV transmission line Statements:

circuit requires the expansion of the 230 kV switchyard at Morning Star Tie. The

existing banks at Morning Star can overload under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2029

Project Name:

STATESVILLE TIE - MOORESVILLE TIE 44 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 7.9 miles (Statesville Tie – Perth Rd Retail Tap) of the Statesville Tie – Mooresville Tie 44 kV transmission line with 954 ACSR at 120°C as double circuit,

establishing a new 100 kV circuit out of Statesville Tie.

Supporting

The existing Statesville Tie – Mooresville Tie 44 kV transmission line can overload under

Statements:

contingency.

In-Service

2030

Year:

Project Name: DAN RIVER STEAM – NORTH GREENSBORO TIE 100 KV TRANSMISSION LINES,

REBUILD

Description: Rebuild the entire Dan River Steam – North Greensboro 100 kV transmission lines (25.9

miles) with 1272 ACSR at 120°C.

Supporting

The Dan River Steam - North Greensboro Tie 100 kV transmission lines can overload

Statements: under contingency.

In-Service

2030

Year:

Project Name: EAST DURHAM TIE 100 KV, EXPANSION

Description: Expand East Durham Tie and establish two new 100 kV terminals for the future East

Durham – Parkwood Tie 100 kV transmission line. Reterminate the Stallings Rd Retail Tap off the East Durham Tie – Ashe St Switching Station 100 kV transmission line into

East Durham Tie.

Supporting

The East Durham Tie – Ashe St Switching Station 100 kV transmission line can overload

Statements: durin

during contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

2030

Year:

Project Name: LOOKOUT TIE 100 KV, INSTALL

Description: Install a remedial action scheme at Lookout Tie 100 kV.

Supporting The Lyle Creek – Lookout Tie 100 kV transmission lines and the Lookout Tie – Stamey

Statements: Tie 100 kV transmission lines can overload under contingency.

In-Service

2030

Year:

Project Name: PARKWOOD TIE – CUSTOMER STATION 100 KV TRANSMISSION LINE, EXTENSION

Description: Extend the Parkwood Tie – Customer Station 100 kV (14.4 miles) and network with East

Durham Tie 100 kV. Conductor for the extension will be 1272 ACSR conductor at 120°C.

Supporting To help address thermal loading issues throughout the region around Parkwood Tie,

Statements: the Parkwood Tie – Customer Station 100 kV will be extended and networked with East

Durham Tie 100 kV.

In-Service

2031

Year:

Project Name: CENTRAL TIE 230 KV, INSTALL

Description: Install a 230 kV series bus junction breaker at Central Tie 230 kV.

Supporting Contingencies involving the single bus junction breaker at Central Tie 230 kV can cause

Statements: a number of 100 kV overloads throughout the region.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2031

Project Name:

ENO TIE – CREST STREET SWITCHING STATION 100 KV, UPRATE

Description: Correct clearance issues on the Eno Tie – Crest Street Switching Station 100 kV to

improve ratings of the existing bundled 477 ACSR conductor to 120°C.

Supporting

The Eno Tie – Crest Street Switching Station 100 kV transmission lines can overload

Statements: under contingency.

In-Service

2033

Year:

Project Name: HARRISBURG TIE – AMITY SWITCHING STATION 100 KV TRANSMISSION LINE,

REBUILD

Description: Rebuild 6.45 miles (Harrisburg Tie to Structure 52.0) of the Harrisburg Tie – Amity

Switching Station 100 kV transmission line with 1272 ACSR at 120°C.

Supporting The Harrisburg Tie – Amity Switching Station 100 kV transmission lines can overload

Statements: under contingency.

2033

In-Service

Year:

Project Name: NEWPORT TIE – MORNING STAR TIE 230 KV TRANSMISSION LINE

Description: Add a second circuit to the Newport Tie – Morning Star Tie 230 kV transmission line by

relocating the existing 100 kV circuit on the structures to a new 100 kV corridor and

adding additional 954 ACSR conductors to complete the new circuit.

Supporting

Existing Newport Tie – Morning Star Tie 230 kV transmission line can overload under

Statements: contingencies.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2035

Project Name:

CLIFFSIDE STEAM – SHELBY TIE 100 KV TRANSMISSION LINES, REBUILD

Description:

Rebuild 5.4 miles (Shelby Tie – Customer Tap Station) of the Cliffside Steam – Shelby Tie 100 kV transmission lines with 1272 ACSR at 120°C. Project listed as conceptual in

the local transmission plan. Need date may shift in future.

Supporting

The Cliffside Steam – Shelby Tie 100 kV transmission lines can overload under

Statements:

contingencies.

In-Service

2035

Year:

Project Name: DAN RIVER CC – DAN RIVER STEAM 100 KV TRANSMISSION LINES, REBUILD

Description: Rebu

Rebuild the entire Dan River CC – Dan River Steam 100 kV transmission lines (0.5 miles)

with bundled 1158 ACSS/TW at 200°C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting

The Dan River CC – Dan River Steam 100 kV transmission lines can overload under

Statements: contingency.

In-Service

2035

Year:

Project Name: DAN RIVER STEAM – SADLER TIE 100 KV TRANSMISSION LINES, REBUILD

Description:

Rebuild the entire Dan River Steam – Sadler Tie 100 kV transmission lines (8.1 miles of Reidsville Circuits and 8.2 miles of Wolf Creek Circuits) with 1272 ACSR at 120°C.

Project listed as conceptual in the local transmission plan. Need date may shift in the

future.

Supporting

The Dan River Steam - Sadler Tie 100 kV transmission lines can overload under

Statements:

contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2035

Project Name:

HARRISBURG TIE – MINE SHAFT RETAIL 100 KV TRANSMISSION LINE, CONVERSION

Description:

Convert the existing Harrisburg Tie – Univ of N C Charlotte 44 kV transmission line to 100 kV to establish a second 100 kV circuit of the Harrisburg Tie – Mine Shaft Retail 100 kV transmission line. Project listed as conceptual in the local transmission plan. Need

date may shift in the future.

Supporting

The Harrisburg Tie - Concord Main 100 kV transmission lines can overload under

Statements: contingency.

In-Service

2035

Year:

Project Name: LONGVIEW TIE – LYLE CREEK SWITCHING STATION 100 KV TRANSMISSION LINE,

REBUILD

Description: Rebuild 3 miles (Longview Tie – North Lakes Retail) of the Longview Tie – Lyle Creek

Switching Station 100 kV transmission line with 477 ACSS/TW at 200°C. Extend the line 5 miles utilizing the Hickory Tie – Lookout Tie 44 kV transmission line right of way.

Supporting

The Hickory Tie - Lyle Creek 100 kV, Lyle Creek - Lookout Tie 100 kV, and the Stamey

Statements: Tie – Lookout Tie 100 kV transmission lines can overload under contingencies.

In-Service

2035

Year:

Project Name: LOOKOUT TIE – MARSHALL STEAM 44 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Lookout Tie – Marshall Steam 44 kV transmission line as double circuit with

954 ACSR at 120°C. Establish a 100 kV circuit served out of Lookout Tie. Project listed as

conceptual in the local transmission plan. Need date may shift in future.

Supporting

The Lookout Tie - Marshall Steam 44 kV transmission line can experience thermal and

Statements: voltage issues under periods of extreme loading.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2035

Project Name:

MADISON TIE 100/44 KV TRANSFORMER, INSTALL

Description:

Add a second 100/44 kV autotransformer to Madison Tie. Project listed as conceptual

in the local transmission plan. Need date may shift in future.

Supporting

The single 100/44 kV autotransformer at Madison Tie cannot support future load

Statements: growth.

In-Service

2035

Year:

Project Name: N

MARSHALL STEAM - BECKERDITE TIE 230 KV TRANSMISSION LINE, UPRATE

Description:

Correct clearance issues on the Marshall Steam – Beckerdite Tie 230 kV transmission line to improve ratings of the existing 954 ACSR conductor to 120°C. Project listed as

conceptual in the local transmission plan. Need date may shift in future.

Supporting

Statements:

The Marshall Steam – Beckerdite Tie 230 kV transmission line ratings can limit the operational flexibility of Belews Steam Station. Improving line ratings will remove that

limitation.

In-Service

2035

Year:

Project Name:

MARSHALL STEAM STATION – BOYD SWITCHING STATION 230 KV TRANSMISSION

LINE, REBUILD

Description:

Rebuild the entire 15 miles of the Marshall Steam – Boyd Switching Station 230 kV

transmission line with bundled 1272 ACSR conductor at 120°C. Project listed as

conceptual in the local transmission plan. Need date may shift in future.

Supporting

The Marshall Steam – Boyd Switching Station 230 kV transmission lines can overload

Statements:

under contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: MCGUIRE NUCLEAR STATION – MARSHALL STEAM STATION 230 KV TRANSMISSION

LINES, REBUILD

2035

Description: Rebuild the entire McGuire Nuclear Station – Marshall Steam Station 230 kV

transmission lines with 1533 ACSS/TW at 200°C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting

The McGuire Nuclear Station - Marshall Steam Station 230 kV transmission lines can

Statements: overload under contingency.

In-Service

2035

Year:

Project Name: OAK HOLLOW SWITCHING STATION 100 KV, CONSTRUCT

Description: Construct a new switching station on the Beckerdite Tie – Greensboro Main 100 kV

transmission lines. Project listed as conceptual in the local transmission plan. Need

date may shift in future.

Supporting

The Beckerdite Tie - Greensboro Main 100 kV transmission lines can overload under

Statements: contingencies.

In-Service

2035

Year:

Project Name: ORCHARD TIE – HICKORY TIE 100 KV TRANSMISSION LINES, REBUILD

Description: Rebuild 4.2 miles (Orchard Tie – Newton Tie Tap) of the Orchard Tie – Hickory Tie 100

kV transmission line with 1272 ACSR conductor at 120°C. Project listed as conceptual in

the local transmission plan. Need date may shift in future.

Supporting

The Orchard Tie – Hickory Tie 100 kV transmission lines can overload under

Statements:

contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

Project Name: PLEASANT GARDEN TIE – MEBANE TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 1.73 miles (Mebane Tie – Trollingwood Retail) of the Pleasant Garden –

Mebane Tie 100 kV transmission line with 1272 ACSR at 120°C. Project listed as

conceptual in the local transmission plan. Need date may shift in future.

Supporting

The Pleasant Garden Tie – Mebane Tie 100 kV transmission lines can overload under

Statements: contingency.

In-Service

Year:

2035

2035

Project Name:

RURAL HALL TIE – SHATTALON SWITCHING STATION 100 KV TRANSMISSION LINES,

REBUILD

Description:

Rebuild both of the Rural Hall Tie – Shattalon Switching Station 100 kV transmission

lines with 795 ACSS/TW at 200°C. Project listed as conceptual in the local transmission

plan. Need date may shift in future.

Supporting

Both of the Rural Hall Tie – Shattalon Switching Station 100 kV transmission lines can

Statements: overload under contingencies.

In-Service

2035

Year:

Project Name: STAMEY TIE – LOOKOUT TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 5.5 miles (Lookout Tie – Customer Delivery) of the Stamey Tie – Lookout Tie

100 kV transmission line with bundled 1272 ACSR at 120°C. Project listed as conceptual

in the local transmission plan. Need date may shift in future.

Supporting

The Stamey Tie - Lookout Tie 100 kV transmission lines can overload under

Statements:

contingency.

DUKE CAROLINAS Balancing Authority Area

In-Service

Year:

2035

Project Name:

STAMEY TIE - STATESVILLE TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire 6 miles of the Stamey Tie – Statesville Tie 100 kV transmission line

with 1272 ACSR conductor at 120°C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting

The Stamey Tie – Statesville Tie 100 kV transmission lines can overload under

Statements:

contingency.

In-Service

2035

Year: Project Name:

TIGER TIE - CAMPOBELLO TIE 100 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire 11.8 miles of the Tiger Tie – Campobello Tie 100 kV transmission line

with 1272 ACSR conductor at 120°C. Project listed as conceptual in the local

transmission plan. Need date may shift in future.

Supporting

The Tiger Tie - Campobello Tie 100 kV transmission lines can overload under

Statements:

contingency.

In-Service

2035

Year:

Project Name: WINECOFF TIE – CONLEY SWITCHING STATION 100 KV TRANSMISSION LINES,

REBUILD

Description: Rebuild 7.9 miles (Winecoff – Eastfield Retail) of the Winecoff Tie – Conley Switching

Station 100 kV transmission lines with 1272 ACSR at 120°C. Project listed as conceptual

in the local transmission plan. Need date may shift in future.

Supporting

The Winecoff Tie – Conley Switching Station 100 kV transmission lines can overload

Statements: und

under contingency.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

2026

Project Name: CAMDEN JUNCTION – DPC WATEREE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Camden Junction – DPC Wateree 115 kV transmission line using 795

ACSS/TW conductor at 365°F or equivalent (~5.27 miles).

Supporting Various solar studies have shown the need for this upgrade. This upgrade is needed for

Statements: future solar generation proposed for compliance with the Carbon Plan goals.

In-Service

Year:

Project Name: CAPE FEAR PLANT – WEST END 230 KV TRANSMISSION LINE, REBUILD

Description: This project consists of rebuilding the 1272 ACSR portions of the Cape Fear – West End

230 kV transmission line using 6-1590 MCM ACSR 212°F conductor (~26.6 miles).

Raise/Upgrade the 2515 ACSR sections to 212°F maximum operating temperature (~4.5

miles).

2026

Supporting Various generator interconnection studies have shown the need to upgrade this line.

Statements: This upgrade is needed for future generation proposed for compliance with the Carbon

Plan goals.

In-Service

2026

Year:

Project Name: CASTLE HAYNE – FOLKSTONE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 25.91 miles of the Castle Hayne – Folkstone 115 kV transmission line with 1272

MCM ACSR conductor at 212°F.

Supporting

The Castle Hayne 230 kV Sub – Folkstone 115 kV transmission line overloads under

Statements: contingency.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

2026

Project Name:

ERWIN – FAYETTEVILLE EAST 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 23 miles of the Erwin – Fayetteville East 230 kV transmission line with 6-1590

MCM ACSR conductor at 212°F.

Supporting Statements:

Various solar studies have shown the need for this upgrade. This upgrade is needed for

future solar generation proposed for compliance with the Carbon Plan goals.

In-Service

2026

Year:

Project Name: FAYETTEVILLE – FAYETTEVILLE DUPONT 115 KV TRANSMISSION LINE, FAYETTEVILLE –

HOPE MILLS CHURCH ST. SECTION, REBUILD

Description: Rebuild the Fayetteville – Hope Mills Church St section of the Fayetteville – Fayetteville

Dupont 115 kV transmission line using 795 ACSS/TW conductor at 365°F or equivalent

(~4.9 miles).

Supporting Statements:

Various solar studies have shown the need for this upgrade. This upgrade is needed for

future solar generation proposed for compliance with the Carbon Plan goals.

In-Service

2026

Year:

Project Name: FAYETTEVILLE 230/115 KV BANK #1, 115 KV DISCONNECT SWITCHES, WAVE TRAPS,

AND CT RATIOS, UPGRADE

Description: Uprate all CT ratios and relay settings on Fayetteville 230/115 kV bank #1 to allow full

transformer rating.

Supporting

Statements:

Various contingencies cause the Fayetteville 230/115 kV bank #1 to overload.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

2026

Project Name:

GREENVILLE - DVP EVERETTS 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the DEP portion of the Greenville – DVP Everetts 230 kV transmission line (1.93

miles) with 6-795 MCM ACSS/TW/HS 365°F conductor. Affected System project.

Supporting

Statements:

Greenville – DVP Everetts 230 kV overloads under contingency.

In-Service

2026

Year:

Project Name:

HAVELOCK 230 KV SUBSTATION, UPGRADE

Description:

At Havelock 230kV, upgrade 115 kV disconnect switches, wave traps, and CT ratios on the Harlowe and Morehead Wildwood 115 kV transmission lines. Upgrade line switches

at Cherry Pt #2 115 kV.

Supporting

Various contingencies overload 115 kV lines out of Havelock 230 kV due to terminal

Statements:

equipment.

In-Service

2026

Year:

Project Name: HILL CREST (CARTHAGE AREA) 230 KV SUBSTATION, CAPE FEAR – WEST END 230 KV

AND WEST END – SOUTHERN PINES 115 KV FEEDERS, CONSTRUCT AND LOOP-IN

Description:

Construct a new Hill Crest 230/115 kV substation near the existing Carthage 115 kV substation. Loop in the existing Cape Fear – West End 230 kV transmission line and West End – Southern Pines 115 kV feeder. The new Carthage 230 – West End 115 kV

transmission line will be normally open at Carthage 230 kV.

Supporting

Statements:

Various contingencies cause overloads and low voltages in the area.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

Project Name: MILBURNIE 230 KV SUBSTATION, UPGRADE

Description: This project consists of adding redundant bus protection at Milburnie 230 kV

substation.

2026

2026

Supporting Various solar studies have shown the need for this upgrade. This upgrade is needed for

Statements: future solar generation proposed for compliance with the Carbon Plan goals.

In-Service

Year:

Project Name: ROBINSON – ROCKINGHAM 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild sections of the Robinson – Rockingham 230 kV transmission line using 6-1590

MCM ACSR conductor at 212°F (~19 miles).

Supporting Various solar studies have shown the need for this upgrade. This upgrade is needed for

Statements: future solar generation proposed for compliance with the Carbon Plan goals.

In-Service 2026

Year:

Project Name: SUMTER – DESC EASTOVER 115 KV TRANSMISSION LINE (KINGS HWY – SHAW FIELD –

EASTOVER), REBUILD

Description: Rebuild Sumter Kings Hwy – Shaw Field Tap and Shaw Field Tap – DESC Eastover

sections of Sumter – Eastover 115 kV transmission line to 1272 ACSR conductor at 212°F (7.49 miles) and raise 2.16 miles of the Sumter Gold Kist Tap – Sumter Kings Hwy

section to full conductor rating.

Supporting Various contingencies cause the Shaw Field Tap – Eastover section of the Sumter –

Statements: Eastover 115 kV transmission line to overload.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

Project Name:

BRUNSWICK 2 - DELCO 230 KV WEST LINE (BRUNSWICK 2 - BEMC SOUTHPORT),

RAISE

2027

Description: Raise Brunswick 2 – BEMC Southport section of the Brunswick 2 – Delco 230 kV West

transmission line to full 212°F conductor rating.

Supporting Various contingencies cause the cause the Brunswick 2 – BEMC Southport section of

Statements: Brunswick 2 – Delco 230 kV West transmission line to overload.

In-Service

2027

Year:

Project Name: CLAYTON INDUSTRIAL – SELMA 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 9.4 miles of entire Clayton Industrial – Selma 115 kV transmission line to 795

ACSS/TW at 365°F.

Supporting Various generator interconnection studies have shown the need to upgrade this line.

Statements: This upgrade is needed to enable generation consistent with the approved IRP.

In-Service

2027

Year:

Project Name: ROBINSON PLANT – ROCKINGHAM 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Sneedsboro Solar – Cordova – Rockingham portions of the Robinson –

Rockingham 115 kV transmission line using 795 ACSS/TW conductor at 365°F or

equivalent (~17 miles).

Supporting

Various solar studies have shown the need for this upgrade. This upgrade is needed for

Statements: future solar generation proposed for compliance with the Carbon Plan goals.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

2027

Project Name:

SUMTER – DESC EASTOVER 115 KV TRANSMISSION LINE (SUMTER GOLD KIST TAP –

SUMTER KINGS HWY SECTION), REBUILD

Description: Rebuild the 5.82 mile 397.5 ACSR portion (Sumter Gold Kist Tap – Sumter Kings Hwy

section) of the Sumter – DESC Eastover 115 kV transmission line with 3-1272 MCM

45/7 ACSR 212°F conductor.

Supporting

Multiple contingencies cause the Sumter Gold Kist Tap – Sumter Kings Hwy section of

Statements: Sumter – Eastover 115 kV transmission line to overload.

In-Service

Year:

Project Name: WEATHERSPOON – LOF 115 KV TRANSMISSION LINE (MAXTON – PEMBROKE),

REBUILD

2027

Description: Rebuild 9 miles (near Pembroke to near Maxton) with 3-795 MCM ACSS/TW 365°F.

Install two new switches.

Supporting

The Maxton – Pembroke section of the Weatherspoon – LOF 115 kV transmission line

Statements: overloads under contingency.

In-Service

2028

Year:

Project Name:

LILESVILLE - OAKBORO 230 KV BLACK AND WHITE LINES, REBUILD

Description: Rebuild t

Rebuild the entire DEP portion of Lilesville - Oakboro 230 kV Black and White lines to

6-1272 ACSR 212°F conductor.

Supporting

Various generator interconnection studies have shown the need to upgrade this line.

Statements: This upgrade is needed to enable generation consistent with the approved IRP.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

Project Name: BRUNSWICK 1 – DELCO 230 KV EAST LINE (BRUNSWICK 1 – SOUTHPORT TAP),

UPGRADE SWITCH AND REBUILD BRUNSWICK 1 – SOUTHPORT TAP SECTION

Description: Rebuild the Brunswick 1 – Southport Tap section (0.09 miles) of Brunswick 1 – Delco

230 kV East transmission line with 6-1590 MCM ACSR 212°F conductor.

Supporting Various contingencies cause the Brunswick 1 – Southport Tap section of Brunswick 1 –

Statements: Delco 230 kV East line to overload.

In-Service

2031

2035

2030

Year:

Project Name: LEE – MILBURNIE 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire Lee – Milburnie 230 kV transmission line with 954 MCM HS285

ACSS/TW conductor (40.19 miles) and upgrade terminal equipment.

Supporting Various generator interconnection studies have shown the need to upgrade this line.

Statements: This upgrade is needed to enable generation consistent with the approved IRP.

In-Service

Year:

Project Name: DURHAM – RTP 230 KV TRANSMISSION LINE (DURHAM – BRIER CREEK), REBUILD

Description: Rebuild 4.6 miles (Durham – Brier Creek) of the Durham – RTP 230 kV transmission line

with 6-1590 MCM ACSR 212°F conductor. This project is listed as conceptual in the

local transmission plan.

Supporting

Statements:

This upgrade is needed to serve a new industrial customer load.

Southeastern Regional TRANSMISSION PLANNING

SERTP TRANSMISSION PROJECTS

DUKE PROGRESS EAST Balancing Authority Area

In-Service

2035

Year:

Project Name:

FALLS - FRANKLINTON (FRANKLINTON - FRANKLINTON NOVO 115 KV FEEDER),

CONSTRUCT

Description: Construct new Franklinton – Franklinton Novo 115 kV Feeder line. This project is listed

as conceptual in the local transmission plan. Need date may shift in future.

Supporting

Multiple contingencies cause low voltages at buses on the Franklinton – Spring Hope SS

Statements: 115 k

115 kV transmission line.

In-Service

2035

Year:

Project Name: HOLLY RIDGE NORTH 115 KV SWITCHING STATION, CONSTRUCT

Description: Construct a new 115 kV switching station northeast of Holly Ridge, NC where the Castle

Hayne – Folkstone 115 kV and Folkstone – Jacksonville City 115 kV transmission lines come together. Construct a new 115 kV feeder from the new switching station to

JOEMC Folkstone POD.

Supporting

Multiple contingencies result in low voltages on the Castle Hayne – Folkstone 115 kV

Statements: transmission line.

In-Service

2035

Year:

Project Name: ROCKY MOUNT – WILSON 115 KV TRANSMISSION LINE, TERMINAL EQUIPMENT,

UPGRADE

Description: Upgrade terminal equipment at both ends of the Rocky Mt – Wilson 115 kV

transmission line. This project is listed as conceptual in the local transmission plan.

Supporting

Various contingencies cause the Wilson – Elm City Solar Tap section of the Rocky –

Statements: Mount Wilson 115 kV transmission line to overload.

DUKE PROGRESS EAST Balancing Authority Area

In-Service

Year:

2035

Project Name: WEATHERSPOON – LOF 115 KV LINE (WEATHERSPOON – LREMC WEST LUMBERTON),

RECONDUCTOR

Description: Reconductor Weatherspoon – West Lumberton, approx. 8.4 miles of the

Weatherspoon – LOF 115 kV line, with 795 ACSS/TW 365°F conductor. The project is

currently deferred based on 2024 study results.

Supporting The Weatherspoon – LREMC West Lumberton section of the Weatherspoon – LOF 115

Statements: kV transmission line overloads for various contingencies.

DUKE PROGRESS WEST Balancing Authority Area

In-Service

Year:

2026

Project Name:

ASHEVILLE PLANT - OTEEN 115 KV WEST TRANSMISSION LINE, ARDEN TAP,

CONSTRUCT

Description: Build a new 1272 MCM ACSR 212°F tap line from the Asheville Plant – Oteen 115 kV

West line to Arden 115 kV substation on the Asheville Plant - Oteen 115 kV East

transmission line.

Supporting Statements:

Various contingencies cause low voltages in the area.

In-Service

Year:

2026

Project Name: VANDERBILT – WEST ASHEVILLE 115 KV LINE, 115 KV CB AND SWITCHES, UPGRADE

Description: Replace the following equipment at Vanderbilt 115 kV Substation: 1-115 kV Breaker, 2

sets of 115 kV disconnects, and 1-115 kV switch. Also uprate CT ratios at Vanderbilt

and West Asheville substations.

Supporting Outage of the Craggy – West Asheville 115 kV transmission line can cause the

Statements: Vanderbilt – West Asheville 115 kV transmission line to overload.

SERTP TRANSMISSION PROJECTS LGE&E/KU Balancing Authority Area

In-Service

2026

Year: Project Name:

MIDDLETOWN - BUCKNER 345 KV TRANSMISSION LINE, UPGRADE

Description: Replace the 345 kV breakers at Middletown and Buckner associated with the

Middletown - Buckner 345 kV transmission line.

Supporting

Statements:

The Middletown and Buckner 345 kV breakers overload under contingency.

In-Service

2026

Year:

Project Name: PINEVILLE SW – ARTEMUS 161 KV TRANSMISSION LINE, UPGRADE

Description: Replace a breaker and switches at Pineville Switching associated with the Pineville Sw –

Artemus 161 kV transmission line.

Supporting

Statements:

The Pineville Sw – Artemus 161 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: CANE RUN SW – LAKE DREAMLAND 138 KV TRANSMISSION LINE 1, UPRATE

Description: Increase the maximum operating temperature of 2.04 miles of bundled 795 ACSR 138

kV conductor to 212°F from Cane Run Switching to the new Lake Dreamland 138 kV station. Replace all terminal equipment at Cane Run Switching associated with this line.

Supporting

The Cane Run – Lake Dreamland (3801) 138 kV transmission line overloads under

Statements: contingency.

LGE&E/KU Balancing Authority Area

In-Service

Year:

2027

Project Name:

CANE RUN SW – LAKE DREAMLAND 138 KV TRANSMISSION LINE 2, UPRATE

Description: Increase the maximum operating temperature of 2.04 miles of bundled 795 ACSR 138

kV conductor to 212°F from Cane Run Switching to the new Lake Dreamland 138 kV station. Replace all terminal equipment at Cane Run Switching associated with this line.

Supporting

The Cane Run – Lake Dreamland (3808) 138 kV transmission line overloads under

Statements: contingency.

In-Service

2028

Year:

Project Name: JEFFERSON – WATTERSON 138KV TRANSMISSION LINE, UPGRADE

Description: Replace 138 kV terminal equipment rated less than or equal to 1192A (285 MVA)

summer emergency rating associated with the Jefferson – Watterson 138 kV line with equipment capable of a minimum of 1451A (347 MVA) summer emergency rating.

Supporting

Statements:

The Jefferson – Watterson 138kV line overloads under contingency.

In-Service

2030

Year:

Project Name: CANE RUN 345/138 KV TRANSFORMER, REPLACE

Description: Replace all terminal equipment at Cane Run CT associated with the Cane Run 345/138

kV transformer.

Supporting

The Cane Run CT (NGCC) 345/138 kV transformer overloads under contingency.

Statements:

SERTP TRANSMISSION PROJECTS LGE&E/KU Balancing Authority Area

In-Service

2034

Year: Project Name:

GREEEN RIVER 161/138 KV TRANSFORMER, REPLACE

Description: Replace 138 kV bushing CT on the Green River T03 161/138 kV transformer to meet or

exceed the transformer limit.

Supporting

Statements:

The Green River T03 161/138 kV transformer overloads under contingency.

In-Service

Year: Project Name:

ADAMSVILLE – BUZZARD ROOST 230 KV TRANSMISSION LINE, REBUILD AND JUMPER

UPGRADE

2026

Description: Rebuild part of the Adamsville – Buzzard Roost 230 kV transmission line with 200°C

1351 ACSS Martin conductor. Replace limiting elements at substations along the line.

Supporting

Statements:

The Adamsville – Buzzard Roost 230 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: ARKWRIGHT, BUS AND JUMPER REPLACEMENT

Description: Replace the 115 kV bus at Arkwright with higher rating and replace the jumper on the

Arkwright - Forrest Rd (Macon) 115 kV transmission line with 1590AAC.

Supporting The Arkwright – Forrest Road (Macon) 115 kV transmission line overloads under

Statements: contingency.

In-Service

2026

Year:

Project Name: BARTLETTS FERRY, JUMPER REPLACEMENT

Description: Replace the limiting jumper with a higher rated jumper.

Supporting

Jumpers exceed their thermal rating under contingency.

Statements:

In-Service

2026

Year:

Project Name: BLANKETS CREEK – WOODSTOCK 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire Blankets Creek – Woodstock 115 kV transmission line, approximately

7.1 miles, with 200°C 795 ACSS conductor.

Supporting The Blankets Creek – Woodstock 115 kV transmission line overloads under

Statements: contingency.

In-Service

2026

Year:

Project Name: BRUNSWICK – MCMANUS 115 KV LINES, RE-TERMINATION

Description: Re-terminate either Brunswick – McManus 115 kV Black or White transmission line to

bus 1

Supporting The Brunswick – GeorgiaPacific (Black) 115 kV transmission line overloads under

Statements: contingency.

In-Service

2026

Year:

Project Name: CASS PINE 230/25 KV, NEW SUBSTATION AND AREA IMPROVEMENTS

Description: Build a new 230/25 kV networked substation named Cass Pine in Bartow County that

will interconnect between the new Great Valley and Hill View 230 kV substations.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements: area.

In-Service

2026

Year: Project Name:

DU: EAST DALTON - OOSTANAULA 115 KV TRANSMISSION LINE, REBUILD

Description: DU: Rebuild the portion of East Dalton – Oostanaula and Dalton – East Dalton 115 kV

double circuit transmission lines between East Dalton substation and the Dalton

substation frame with 200°C 795 ACSS conductor.

Supporting

Statements:

The East Dalton – Oostanaula 115 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: DU: LOOPERS FARM – SOUTH DALTON 230 KV, CONSTRUCT

Description: Build a new 230 kV networked switching station on DU Loopers Farm – South Dalton

230 kV, radialize South Dalton 230 kV station, and build a new 230 kV line from Loopers

Farm to Jobs Creek with 200°C 1351 ACSS Martin conductor.

Supporting

The Loopers Farm – South Dalton 230 kV transmission line overloads under base case

Statements: conditions.

In-Service

2026

Year:

Project Name: EAST POINT 115 KV AND 230 KV, RELAY MODERNIZATION

Description: Upgrade protection scheme at the East Point substation.

Supporting

The project addresses stability issues in the transmission network caused by multiple

Statements: contingencies.

62

In-Service

2026

Year:

Project Name: EMBLEM RIVERSIDE 230 KV, NEW SUBSTATION, CONSTRUCT

Description: A Fiber ICON ring is being built to help with communication and to better protect of the

transmission system in the area.

Supporting This project adds protection to the transmission system in the area to increase

Statements: coordination.

In-Service

_

2026

Year: Project Name:

FAYETTEVILLE AREA TRANSMISSION NEEDS, CONSTRUCT

Description: Build a new 500/230 kV substation with two 500/230 kV autotransformers. Two new

230 kV transmission lines will be built from the new 500/230 kV substation to the high side of the customer substations with bundled 200°C 1351 ACSS Martin conductor.

side of the editorner substitutions with burnaled 200 C 1351 Ness War this conductor.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements: area.

In-Service

2026

Year:

Project Name: FENWICK STREET – SAND BAR FERRY 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 2.72 miles of 115 kV transmission line sections of the Fenwick

Street – Sand Bar Ferry 115 kV transmission line with 100°C 1351 ACSR conductor.

Supporting

The Fenwick Street – Sand Bar Ferry 115 kV transmission line overloads under

Statements: contingency.

In-Service

2026

Year: Project Name:

FULLER ROAD – COLUMBUS FIRST AVE 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 3 miles of Fuller Road – Columbus First Ave 115 kV

transmission line (from Columbus First Ave to Phenix Lumber) from 100°C 397 ACSR

conductor to 200°C 397 ACSS 26/7 conductor.

Supporting

The Fuller Road - Columbus First Avenue 115 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

2026

Project Name: **GARRETT ROAD 230 KV SWITCHING STATION – TRAE LANE, NEW TRANSMISSION**

LINE, CONSTRUCT

Description: Build the new Garrett Road 230 kV switching station splitting the Villa Rica – West

> Marietta 230 kV transmission line. Build a new 230 kV transmission line (8.6 miles) from the Trae Lane substation to the Garrett Road switching substation with bundled

100°C 1351 ACSR conductor.

Supporting

The project addresses multiple 115 kV overloads that occur under contingency and Statements: supports load growth in the area.

2026

In-Service

Year:

Project Name: **GOAT ROCK – NORTH OPELIKA 230 KV TRANSMISSION LINE, UPGRADE**

Description: Upgrade the approximately 17.2 mile section of transmission line from North Opelika

to Goat Rock 230 kV to operate at 100° C.

Supporting

Statements:

The Goat Rock – North Opelika 230 kV transmission line overloads under contingency.

In-Service

Year:

2026

Project Name:

GOAT ROCK 230 KV SWITCH, JUMPER, AND LINE TRAP, REPLACEMENT

Description:

Replace limiting elements on the Goat Rock - North Opelika 230 kV transmission line

with higher ratings.

Supporting

Statements:

The Goat Rock – North Opelika 230 kV transmission line overloads under contingency.

In-Service

-

2026

Year:

Project Name: GORDON - N DUBLIN 115 KV (GORDON - ENGL MCI J) TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 6 miles of the Gordon – North Dublin 115 kV transmission line

with 200°C ACSS 795 conductor.

Supporting

Statements:

The Gordon – North Dublin 115 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: GRADY 230/115 KV, RELAY MODERNIZATION

Description: Upgrade protection scheme, install a breaker, and associated switches at Grady

substation.

Supporting

Statements:

The project addresses stability issues in the transmission network caused by multiple contingencies. It also addresses thermal overload on the Grady – Morrow 115 kV White

transmission line under contingency.

In-Service

2026

Year:

Project Name:

GRADY – WEST END 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the entire 2.6 mile Grady – West End 115 kV transmission line with 200°C 1351

ACSS Martin conductor.

Supporting

Statements:

The Grady – West End 115 kV transmission line exceeds its rating under a contingency.

In-Service

2026

Year:

Project Name:

GRID – GAINESVILLE #2 EQUIPMENT, REPLACEMENT

Description:

Replace autotransformers at Gainesville #2 with a higher rating.

Supporting Statements:

The autotransformers at Gainesville #2 overload under contingency.

In-Service

2026

Year:

Project Name:

GTC: CONYERS – CORNISH MOUNTAIN 115 KV LINE, UPGRADE

Description:

Upgrade 750 jumpers at North Conyers and raise the temp rating of the 636 ACSR conductor on the Conyers – Cornish MTN 115 kV transmission line from 100°C to 125C.

Supporting

Statements:

The Conyers – Cornish Mountain 115 kV transmission line overloads under contingency

In-Service

Year: Project Name:

GTC: DRESDEN 500 KV, BUS EXPANSION

Description: Expand the Dresden 500 kV bus to bring additional 500 kV transmission lines into the

station.

2026

2026

Supporting

Statements:

This project will resolve multiple thermal constraints by eliminating a contingency.

In-Service

. . .

Year:

Project Name: GTC: GORDON – SANDERSVILLE #1 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 1.87 miles of the Gordon – Sandersville #1 115 kV transmission

line with 100°C 795 ACSR conductor.

Supporting

The Gordon – Sandersville #1 115 kV transmission line overloads under base case

Statements: conditions.

In-Service

2026

Year:

Project Name: GTC: LAGRANGE – NORTH OPELIKA 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Build a new 230 kV transmission line from Lagrange to North Opelika (APC) with 200°C

ACSS 1351.5 Martin conductor.

Supporting Statements:

To minimize system impact and to improve system reliability, the project has been

proposed as the most cost-effective solution which solves multiple overloads.

In-Service

Year:

2026

Project Name: GTC: LIZARD LOPE – WESTOVER 115 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct two new 115 kV substations, Lizard Lope and Westover, and build a new 115

kV transmission line, approximately 19.8 miles, from Lizard Lope to Gillionville with

100°C Drake 795 ACSR conductor.

Supporting

Statements:

The Dawson Primary – Palmyra 115 kV transmisson line overloads under contingency.

In-Service

2026

2026

Year:

Project Name: GTC: ROBINS SPRING, BUS REPLACEMENT

Description: Upgrade limiting element at the substation.

Supporting

The Gordon – Sandersville #1 115 kV transmission line overloads under contingency.

Statements:

In-Service

Year:

Project Name: GTC: ROBINS SPRING, CAPACITOR BANK INSTALLATION

Description: Install a 115 kV 2-stage capacitor bank at the substation.

Supporting

There are low voltage issues on several buses of the Gordon – Sandersville #1 115 kV

Statements: transmission line under contingency.

In-Service

2026

Year:

Project Name: **GULFPORT LANDON RD – KILN 115 KV TRANSMISSION LINE, REBUILD**

Description: Rebuild the 14.3 mile, Gulfport Landon - Kiln Crossover 115 kV transmission line with

1351 ACSR at 100°C.

Supporting The Gulfport Landon – Kiln Crossover 115 kV transmission line overloads under

Statements: contingency.

In-Service

2026

Year:

Project Name: HAMMOND – WEISS DAM 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 11.2 miles of Hammond – Weiss Dam 115 kV transmission line from Hammond

to the APC border with 200°C 795 ACSS conductor.

Supporting

Statements:

The Hammond – Weiss Dam 115 kV transmission line overloads under contingency

In-Service

2026

Year:

Project Name: HILLS BRIDGE 500/230 KV, NEW SUBSTATION, CONSTRUCT

Description: Build a new 500/230 kV substation looping in the Ohara – Scherer 500 kV transmission

line. Build two 230 kV transmission lines to customer substation with (2) 200°C 1351

ACSS Martin conductor.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements: area.

In-Service

Year:

2026

Project Name:

JORDAN DAM – MARTIN DAM B 115 KV TRANSMISSION LINE, RECONDUCTOR

Description:

Reconductor approximately 21 miles of 397 ACSR conductor with 200°C 795 ACSS

conductor on Jordan Dam – Martin Dam B 115 kV transmission line.

Supporting

Statements:

The Jordan Dam – Martin Dam 115 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name:

KATHLEEN AREA IMPROVEMENTS

Description:

Rebuild the Bonaire Primary – Kathleen 230 kV transmission line (approximately 6 miles) with 200°C 1351 ACSS conductor. Upgrade limiting elements at the substation

along the Kathleen - Pitts 230 kV transmission line.

Supporting

Statements:

The Bonaire Primary – Kathleen 230 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name:

KLONDIKE, RELAY MODERNIZATION

Description:

Upgrade protection scheme at the Klondike substation.

Supporting

The project addresses stability issues in the transmission network caused by multiple

Statements:

contingencies.

In-Service

Project Name:

2026

Year:

LAGRANGE – NORTH OPELIKA TS 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct approximately 16.5 miles of new 230 kV transmission line with 200°C 1351

54/19 ACSS conductor between North Opelika TS and new metering station, West

Point SS 230 kV.

Supporting

Statements:

This project resolves multiple overloads and improves system reliability.

In-Service

2026

Year:

Project Name: LAUDERDALE EAST – VIMVILLE 230 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor 5.97 miles of the Lauderdale East – Vimville 230 kV transmission line with

200°C 1351 ACSS conductor.

Supporting

Statements:

Transmission line overloads under contingency.

In-Service

ice 2026

Year:

Project Name: MEAG: DRESDEN – LAGRANGE PRIMARY 230 KV, UPGRADE AND JUMPER

REPLACEMENT

Description: Resag the Dresden – LaGrange Primary 230 kV transmission line to 125°C and upgrade

limiting elements at substations along the line with (2) 1590 AAC jumpers.

Supporting

Statements:

The Dresden – Lagrange Primary 230 kV transmission line overloads under contingency.

In-Service

Year:

2026

2026

Project Name: MEAG: RAY PLACE RD – WASHINGTON 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 17.4 miles of the Ray Place Rd – Washington 115 kV

transmission line using 100°C 795 ACSR conductor and upgrade limiting elements at

substations along the transmission line.

Supporting

Statements:

The Ray Place Rd – Washington 115 kV transmission line overloads under contingency.

In-Service

Year:

Project Name: MEAG: RAY PLACE RD – WASHINGTON (WASHNGTN – WASHNGTN 3) 115 KV

TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 1.6 miles of the Ray Place Rd – Washington 115 kV transmission

line using 100°C 1351 ACSR conductor. Upgrade limiting element at substations along

the transmission line.

Supporting

Statements:

The Ray Place Rd – Washington 115 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: MORROW – MOUNTAIN VIEW 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a 1.7 mile segment of Morrow – Mountain View 115 kV transmission line with

200°C 1351 ACSS Martin conductor.

Supporting

The Morrow – Mountain View 115 kV transmission line overloads under contingency.

Statements:

In-Service

2026

Year:

Project Name: MORROW 115 KV, RELAY UPGRADE

Description: Upgrade protection scheme at the Morrow substation.

Supporting A multiple contingency event at Morrow causes stability issues in the transmission

Statements: network.

In-Service

2026

Year:

Project Name: OHARA 115 KV, BREAKER REPLACEMENT

Description: Replace breaker on the Ohara – Tara 115 kV transmission line at the Ohara substation.

Supporting This project is needed to increase breaker duty margins at Ohara substation to comply

Statements: with NERC TPL-001-05, Section 2.3.

In-Service

Year:

Project Name: OHARA LINE, PROTECTIVE RELAYING REPLACEMENT

Description: At Ohara, on the Ohara – Wansley 500 kV transmission line, replace protective relaying

equipment.

2026

Supporting The Ohara – Wansley 500 kV transmission line will be split by the new Dresden – Talbot

Statements: Co 500 kV transmission line and the relay panels need to be replaced to allow for the

new Dresden substation.

In-Service

Year:

2026

Project Name:

PALMYRA, REACTOR REMOVAL

Description:

Remove the reactor at the Palmyra Substation.

Supporting

A permanent solution makes the reactor at Palmyra unnecessary.

Statements:

In-Service

2026

Year:

Project Name:

SAV: BIG OGEECHEE 500/230 KV, NEW SUBSTATION, CONSTRUCT

Description:

Construct a new 500/230 kV substation near Little Ogeechee substation, loop in the nearby 500 kV and 230 kV transmission lines, and construct new 230 kV transmission

lines to Little Ogeechee substation with 100°C 1033.5 ACSR conductor.

Supporting

Multiple 500/230 kV West McIntosh autotransformers exceed their ratings under

Statements:

contingency.

In-Service

2026

Year:

Project Name: SAV: BOULEVARD – DEPTFORD 115 KV TRANSMISSION LINE, RECONDUCTOR

Description:

Reconductor the Boulevard – Deptford 115 kV transmission line, approximately 8 miles, with 973.1 C7 ACCS (Everglades) conductor. Upgrade main bus and jumpers at Bolton substation from 90°C 1590 AAC Coreopsis conductor to 90°C (2)1590 AAC Coreopsis

conductor or higher rated equipment.

Supporting

Statements:

The Boulevard – Deptford 115 kV transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: SAW MILL ROAD - VIDALIA 115 KV, SWITCH REPLACEMENT

Description: Replace the limiting switch at the Vidalia substation with a higher rating.

Supporting

Statements:

Switch exceeds its thermal rating under contingency.

In-Service

2026

Year:

Project Name: SCOTTDALE, RELAY MODERNIZATION

Description: Upgrade protection scheme at the Scottdale substation.

Supporting

The project addresses stability issues in the transmission network caused by multiple

Statements: contingencies.

In-Service

2026

Year:

Project Name: STONEWALL TELL ROAD, CONSTRUCT

Description: Build a 230 kV line segment using 200°C 1351 ACSS Martin conductor to loop in the

Stonewall Tell Road station into the East Point - Union City 230 kV White transmission

line.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements:

area.

In-Service

Year:

2026

Project Name:

UNION CITY (WHITE) – YATES 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire (approximately 23.4 miles) Union City (White) – Yates 230 kV

transmission line with bundled 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Union City – Yates 230 kV White transmission line overloads under contingency.

In-Service

Year:

Project Name:

UNION CITY - YATES 230 KV (WHITE), SWITCH AND TRAP REPLACEMENT

Description: Replace the limiting elements along the Union City – Yates 230 kV (White) transmission

line

2026

Supporting

Statements:

The Union City – Yates 230 kV (White) transmission line overloads under contingency.

In-Service

2026

Year:

Project Name: WANSLEY LINE, PROTECTIVE RELAYING REPLACEMENT

Description: At Wansley, on the Ohara – Wansley 500 kV transmission line, replace protective

relaying equipment.

Supporting Statements:

The Ohara – Wansley 500 kV transmission line will be split by the new Dresden – Talbot Co 500 kV transmission line and the relay panels need to be replaced to allow for the

new Dresden substation

In-Service

Year:

2026

Project Name:

WEST TECH, CAPACITOR BANKS

Description:

Install two new 115 kV, 15 MVAR capacitors at West Tech.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.

Statements:

In-Service

2027

Year:

Project Name:

ATHENA – EAST WATKINSVILLE 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild approximately 8.47 miles of the Athena – East Watkinsville 115 kV

transmission line with 100°C ACSR 1033 conductor.

Supporting

Statements:

The Athena – East Watkinsville 115 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: AUTAUGAVILLE – EAST PELHAM 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description:

Construct approximately 75 miles of new 230 kV transmission line with bundled 200°C

795 ACSS conductor from Autaugaville TS 230 kV to East Pelham TS 230 kV.

Supporting

The Bessemer - South Bessemer 230 kV transmission line overloads under

Statements:

contingency. This solution reduces multiple 230 kV transmission line loadings and

provides additional operational and maintenance flexibility, which increases reliability.

In-Service

Year:

Project Name: BESSEMER – SOUTH BESSEMER 115 KV TRANSMISSION LINE, RECONDUCTOR

(PHASE 1)

2027

Description: Reconductor approximately 2 miles of South Bessemer TS – Bessemer TS 115 kV

transmission line from 100°C 397 ACSR conductor to 200°C 795 ACSS 26/7 conductor.

Supporting Th

The Bessemer – South Bessemer 115 kV transmission line overloads under

Statements: contingency.

In-Service

2027

Year:

Project Name: BIG SHANTY 500 KV, BREAKER INSTALLATION

Description: Install a 500 kV breaker at the Big Shanty substation.

Supporting

Statements:

The 500/230 kV transformer at Big Shanty overloads under contingency.

In-Service

2027

Year:

Project Name: BROADWAY – ECHECONNEE 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor the Griffin Rd to Echeconnee segment, approximately 4.9 miles, of

Broadway – Echeconnee 115 kV transmission line with 210°C 636 ACCR conductor.

Replace limiting jumper with 1590 AAC conductor.

Supporting

Statements:

The Broadway – Echeconnee 115 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: NEW MERIDIAN 230 KV SUBSTATION, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 7.64 mile loop with 200°C 1351 ACSS conductor in new 230 kV

substation.

Supporting This project addresses multiple thermal overloads that occur under contingency and

Statements: supports load growth in the area.

In-Service

2027

2027

Year:

Project Name: DOYLE – LG&E MONROE 230 KV, JACKS CREEK LOOP-IN

Description: Loop in and out the new Jack's Creek 230 kV switching station into the Doyle – LG&E

Monroe 230 kV transmission line.

Supporting Contingencies of 230 kV transmission lines in the area causes several 230 kV lines to

Statements: overload.

In-Service

Year:

Project Name: **EAST POINT – UNION CITY, FIBER INSTALLATION**

Description: Install fiber on the East Point – Union City 230 kV (Black & White) transmission lines.

Supporting This project adds protection to the transmission system in the area to increase

Statements: coordination.

In-Service

Year:

Project Name: **ELLENWOOD AREA NETWORK IMPROVEMENTS**

2027

2027

Description: Rebuild the Austin Drive – Morrow 115 kV transmission line with 200°C 1351 ACSS

Martin conductor and upgrade limiting elements at the Austin Drive substation.

Supporting

Statements:

The Austin Drive – Morrow 115 kV transmission line overloads under contingency.

In-Service

Year:

Project Name: ENTERPRISE TS – PINCKARD #2 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 7.5 miles of 100°C 266 ACSR conductor of the Enterprise to

Daleville DS transmission line with 100° C 795 ACSR 26/7 conductor.

Supporting

Statements:

The Enterprise – Pinckard #2 115 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: PS: GASKIN – SOUTHPORT 115 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct ~13.0 miles of new 115 kV transmission line from the Gaskin Switching

Station to the Southport substation with 795 ACSR/AW at 100°C.

Supporting

Improve the reliability of Gulf Coast Electric's substations by providing a looped service

Statements:

feed.

In-Service

2027

Year:

Project Name: **GRADY 115 KV, BREAKER REPLACEMENTS**

Description: The breaker duty margin for two 115 kV breakers at Grady will become negative.

Replace them with 115 kV higher rated breakers.

Supporting This project is needed to increase breaker duty margins at Grady substation to comply

Statements: with NERC TPL-001-05, Section 2.3.

In-Service

2027

Year:

Project Name: GRID: ARKWRIGHT – LLOYD SHOALS 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Arkwright – Lloyd Shoals 115 kV transmission line with 100°C 795 ACSR

conductor.

Supporting

Statements:

The Arkwright – Lloyd Shoals 115 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: GTC: ADAMSVILLE – BUZZARD ROOST 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild about 5 miles of the Adamsville – Buzzard Roost 230 kV transmission line with

200°C 1351 ACSS Martin conductor.

Supporting

The Adamsville – Buzzard Roost 230 kV transmission line overloads under a

Statements: contingency.

In-Service

2027

Year: Project Name:

GTC: DOUGLASVILLE - VILLA RICA 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 2.5 miles section of the Villa Rica – Douglasville 230 kV transmission line

with bundled 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Villa Rica – Douglasville 230 kV transmission line overloads under a contingency.

In-Service

2027

Year:

Project Name: GTC: DOYLE - WINDER PRIMARY 230 KV LINE, JUMPER REPLACEMENT

Description: Replace the limiting AAC 1033 jumper with AAC 1590 at Doyle on the Doyle - Winder

Primary 230 kV transmission line.

Supporting

Statements:

The Doyle – Winder Primary 230 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: GTC: EAST MOULTRIE - HIGHWAY 112 230 KV, NEW TRANSMISSION LINE,

CONSTRUCT

Description: Build approximately 27 miles of new 230 kV transmission line between HWY 112 and

East Moultrie substations with 160°C 1351 ACSS conductor.

This project addresses thermal overloads on the Daisy – West Valdosta 230 kV Supporting

Statements:

transmission line and Mitchell - Raccoon Creek 230 kV transmission line under

contingency.

In-Service

2027

Year: Project Name:

GTC: EAST WALTON 500/230 KV PROJECT

Description:

GTC:

- Construct the East Walton 500/230 kV substation.
- Construct the Bostwick 230 kV switching station.
- Construct the East Walton Rockville 500 kV transmission line (3 100°C 1113 ACSR).
- Construct the Bethabara East Walton 230 kV transmission line (170°C 1351.5 ACSS).
- Construct the Bostwick East Walton 230 kV transmission line (170°C 1351.5 ACSS).
- Construct the East Walton Jack's Creek 230 kV transmission line (170°C 1351.5 ACSS).
- At Bethabara, terminate the East Walton 230 kV transmission line.
- Loop the East Social Circle East Watkinsville 230 kV transmission line into Bostwick.
- Replace line trap at East Watkinsville on the Bostwick 230 kV transmission line.

GPC:

- Construct the Rockville 500 kV switching station.
- Loop the Scherer Warthen 500 kV transmission line into Rockville.
- Loop the Doyle LG&E Monroe 230 kV transmission line into Jack's Creek.

MEAG: Construct the Jack's Creek 230 kV switching station.

Supporting Statements:

Contingencies of 230 kV transmission lines in Central area cause several 230 kV transmission lines to overload. The project also addresses increasing loads in Northeast Georgia and the increase of South to North flow from Central region into the Northeast due to solar generation located in South GA.

In-Service

2027

Year: Project Name:

GTC: GARRETT RD - V. RICA 230 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor the section from East Villa Rica switching station to Garrett Rd with 160°C

1351 ACSS on 11.5 miles of the Garrett Road – Villa Rica 230 kV transmission line. Additionally, the 2.5 mile section from East Villa Rica Switching Station to Villa Rica will

be rebuilt with bundled 200°C 1351 ACSS Martin conductor.

Supporting Statements:

The Garrett Road – Villa Rica 230 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: GTC: GLENWOOD SPRINGS – LICK CREEK 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 7.5 mile section of the Glenwood Springs – Lick Creek 115 kV

transmission line with 100°C 795 ACSR conductor.

Supporting Statements:

The Glenwood Springs - Lick Creek 115 kV transmission line conductor and structures

are at the end of life and had recent maintenance issues.

In-Service

2027

Year:

Project Name: GTC: HICKORY LEVEL – VILLA RICA 230 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor 8.6 miles of the Hickory Level – Villa Rica 230 kV transmission line with

160°C 1351 ACSS Martin conductor. Replace limiting elements along the transmission

line.

Supporting

Statements:

The Hickory Level – Villa Rica 230 kV transmission line overloads under contingency.

In-Service

2027

Year: Project Name:

GTC: JACKSON 115 KV, BUS AND JUMPER UPGRADES

Description: Upgrade lim

Upgrade limiting elements at Jackson substation to be a higher rating.

Supporting

Statements:

Limiting elements exceed their thermal rating under contingency.

In-Service

2027

Year:

Project Name: GTC: MORNING HORNET, SECOND 230/115 KV AUTOTRANSFORMER, AND STANTON

SP 115 KV, CONSTRUCT

Description: Add a second 230/115 kV autotransformer at Morning Hornet substation. Also, build a

new 115 kV transmission line from Morning Hornet to Thumbs Up, approximately 2.4

miles, with 100°C 1351 ACSR conductor.

Supporting The East Social Circle – Stanton Springs 115 kV and Morning Hornet – Thumbs Up 115

Statements: kV transmission lines overload under contingency.

In-Service

2027

Year:

Project Name: GTC: SOUTH HAZLEHURST 230/115 KV, AUTOTRANSFORMERS REPLACEMENT

Description: Replace 230/115 kV autotransformers at South Hazlehurst with higher rating

transformers.

Supporting

Statements:

The 230/115 kV autotransformers at South Hazlehurst overload under contingency.

In-Service

Year:

2027

Project Name:

GTC: RIDDLEVILLE 115 KV, BUS REPLACEMENT

Description:

Replace the main 115 kV bus at the substation with higher rating.

Supporting

The Sandersville #1 – Wadley 115 kV transmission line overloads under contingency.

Statements:

In-Service

2027

Year:

Project Name: GTC: SKC 115 KV, BUS AND JUMPER REPLACEMENT

Description: Upgrade limiting elements at the SKC substation to a higher rating.

Supporting

Statements:

The Covington #2 – SKC 115 kV line exceeds its thermal rating under contingency.

In-Service

2027

Year:

Project Name: GTC: SWITCH WAY – THORNTON ROAD 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 1.3 mile Switch Way – Thornton Road 230 kV transmission line with

minimum rating of 160°C 1033 ACSS conductor.

Supporting

The Switch Way – Thornton Road 230 kV transmission line overloads under

Statements:

contingency.

In-Service

2027

Year: Project Name:

GULLATT ROAD TRANSMISSION IMPROVEMENTS

Description:

Rebuild the Morrow - Yates Common 115 kV transmission line from Line Creek to the new Gullatt Road substation. Rebuild the Line Creek – Fairburn #2 115 kV transmission line from Line Creek to the new Gullatt Road substation. Remove the Owens Corning Tap Connection on the Morrow – Yates Common 115 kV transmission line and rebuild the line from North Coweta to Str 1. Build a new transmission line section from Str 1 to the new Gullatt Road station. All rebuilds will be done with 200°C 1351 ACSS Martin

conductor.

Supporting Statements: Thie project addresses multiple 115 kV overloads.

In-Service

2027

Year:

Project Name: HILL VIEW & GRASSY HOLLOW SUBSTATION, CONSTRUCT

Description: Build two 230 kV switching stations (Hill View and Grassy Hollow) looping into the

Cartersville - McGrau Ford 230 kV transmission line. Build two new 230 kV

transmission lines: Cass Pine – Great Valley and Great Valley – Grassy Hollow with

200°C 1351 ACSS Martin.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements:

area.

In-Service Year: 2027

Project Name:

JESUP – OFFERMAN 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 20 miles of the Jesup - Offerman 115 kV transmission line with

100°C 795 ACSR Drake conductor.

Supporting

Statements:

The Jesup – Offerman 115 kV transmission line overloads under contingency.

In-Service

2027

Year: Project Name:

JONESBORO - MORROW, RELAY PROTECTION UPGRADE

Description: Upgrade the Jonesboro – Morrow 115 kV transmission line relay protection schemes to

accelerate clearing time.

Supporting This project will need to be completed by the need date to comply with NERC TPL-001-

Statements: 05.

In-Service

Year:

Project Name: LAWRENCEVILLE – WINDER PRIMARY 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire Lawrenceville – Winder Primary 230 kV transmission line,

approximately 15.4 miles, using 200°C 1351 ACSS Martin conductor.

Supporting The Lawrenceville – Winder Primary 230 kV transmission line will overload under

Statements: certain contingency.

2027

In-Service

2027

Year:

Project Name: LINE CREEK 115 KV, BREAKER REPLACEMENTS

Description: At Line Creek, the breaker duty margin for the two 115 kV breakers will become

negative starting on 6/01/2027. Replace them with 115 kV higher rated breakers.

Supporting

This project is needed to increase breaker duty margins at Line Creek substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

Year:

Project Name:

2027

2027

MEAG: FORTSON SUBSTATION MODERNIZATION

Description: Complete modernization and replacement of obsolete equipment and relays for the

500 kV, 230 kV, and 115 kV yards. Add a redundant relay scheme at Fortson.

Supporting Several 115 kV transmission lines overloads under contingency. Substation

Statements: modernization needed due to obsolete equipment and relays.

In-Service

Year:

Project Name: M

MEAG: RAY PLACE RD - WARRENTON PRIMARY 115 KV TRANSMISSION LINE,

RECONDUCTOR

Description: Reconductor approximately 10 miles of the Ray Place – Warrenton Primary 115 kV

transmission line with 170°C ACSS conductor. Upgrade limiting element at substation

along the transmission line.

Supporting

Statements:

Ray Place Rd – Warrenton 115 kV transmission line overloads under contingency.

In-Service

.

2027

Year:

Project Name: MERIDIAN HWY 80 SOUTH 230 KV, NEW SWITCHING STATION, CONSTRUCT

Description: Construct new 230 kV switching station in the Meridian area.

Supporting

This project addresses multiple thermal overloads that occur under contingency and

Statements: supports load growth in the area.

In-Service

2027

Year: Project Name:

MERIDIAN NORTHEAST – LAUDERDALE EAST 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the 6.47 mile Meridian Northeast – Lauderdale East 230 kV transmission line

with 200°C 1351 ACSS conductor.

Supporting

Statements:

Line overloads under contingency.

In-Service

2027

Year:

Project Name: MORROW – YATES COMMON 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a section (approximately 5.1 miles) of the Morrow – Yates Common 115 kV

transmission line with 200°C 1351.0 ACSS Martin conductor.

Supporting

Line sections on the Morrow – Yates 115 kV transmission line overload under

Statements: contingency.

In-Service

2027

Year:

Project Name: OLIVER DAM & BULL CREEK 115 KV, PROTECTION RELAY UPGRADE

Description: At Bull Creek and Oliver Dam 115 kV substations, replace the protection on the Fortson

115 kV transmission line with standard SEL -421/311C1 DCUB panel, capable of providing 7 cycle clearing time or less. Install Line traps and associated carrier

equipment.

Supporting

This project upgrades relay protections at Bull Creek and Oliver Dam substations to

Statements: improve reliability in the system.

In-Service

Year:

Project Name: POSSUM BRANCH - YATES COMMON 115 KV TRANSMISSION LINE (YATES TO CLEM),

REBUILD

2027

Rebuild approximately 11 mile section of the Possum Branch – Yates 115 kV Description:

transmission line with 200°C 1334 T13 ACCR Martin conductor or 200°C 1351.0 ACSS

conductor and replace limiting elements along the line with a higher rating.

Supporting

The Possum Branch – Yates 115 kV transmission line overloads under contingency.

Statements:

In-Service

Year:

Project Name: LLOYD SHOALS 115 KV LIMITING ELEMENTS, REMOVAL

Description: Upgrade limiting elements at Lloyd Shoals substation to be a higher rating.

Supporting

Statements:

Limiting elements exceed their thermal rating under contingency.

In-Service

2027

2027

Year:

Project Name: SANDERSVILLE #1 - WADLEY PRI. 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 24.3 miles of the Sandersville #1 - Wadley Primary 115 kV

transmission line with 100°C 1351 ACSR Drake conductor. Replace limiting elements in

substations along the line.

Supporting

The Sandersville #1 – Wadley Primary 115 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

Project Name:

SAV: GOSHEN (SAV) – KRAFT 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a portion (approximately 3.48 miles) of Goshen – Kraft 115 kV transmission line

from 100°C 795 ACSR Drake conductor to 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Goshen – Kraft 115 kV transmission line overloads under contingency.

In-Service

2027

2027

Year:

Project Name:

SHUGART FARMS AREA IMPROVEMENT

Description: Rebuild the Line Creek 230 kV substation. Reconnect existing 230 kV transmission lines

and build two short lines from Line Creek to Shugart Farms (0.3 miles each) with 100°C

1351 ACSR Martin conductor.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements:

area.

2027

In-Service

Year:

Project Name: SOUTH MACON 115 KV, BUSES 1 & 2, REPLACEMENT

Description: Replace the 115 kV buses 1 and 2 at South Macon with (2) 1590AAC. Replace the

limiting elements on the station with a higher rating.

Supporting

Statements:

The 230/115 kV autotransformers at South Macon overload under contingency.

In-Service

2027

Year: Project Name:

STANTON SP – THUMBS UP 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a portion of Stanton Sp – Thumbs Up 115 kV transmission line with 100°C 1351

ASCR conductor.

Supporting

Statements:

The Stanton Sp – Thumbs Up 115 kV transmission line overloads under contingency.

In-Service

2027

Year:

Project Name: SUMMER LAKE – VILLA RICA 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 2.5 miles portion of the Summer Lake – Villa Rica 230 kV transmission line

with bundled 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Summer Lake – Villa Rica 230 kV transmission line overloads under a contingency.

In-Service

2027

Year:

Project Name: THURLOW DAM – UNION SPRINGS 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 31.5 miles of the Thurlow Dam – Union Springs transmission

line from 75°C 397 ACSR to 200°C 795 ACSS conductor.

Supporting

The Thurlow Dam – Union Springs 115 kV transmission line overloads under

Statements: cont

contingency.

In-Service

Year:

Project Name: TOMOCHICHI 500/230 KV, NEW SUBSTATION, CONSTRUCT

Description: Build the new Tomochichi 500/230 kV switching station splitting the Ohara – Scherer

> 500 kV transmission line. Build two new 230 kV transmission lines from the new Tomochichi substation to the new Towaliga River 230 kV substation using 200°C 1351

ACSS Martin conductor.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements: area.

In-Service

2028

2027

Year:

Project Name: ACIPCO TS - BOYLES 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct ~6 miles of new 230 kV transmission line with 1351 54/19 ACSR at 100°C

from ACIPCO TS to Boyles TS.

Supporting

The Boyles - Miller 230 kV transmission line overloads under contingency. Also

Statements: provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2028

Year:

Project Name: EAST VILLA RICA SWITCHING STATION, ADVANCED POWER FLOW CONTROLLERS,

INSTALLATION

Description: Install Advanced Power Flow Controllers at the new East Villa Rica Switching Station on

the Douglasville - Villa Rica 230 kV and Summer Lake - Villa Rica 230 kV transmission

lines.

Supporting

Statements:

The project addresses multiple thermal overloads that occur under contingency.

In-Service

2028

Year:

Project Name: ANNISTON – HAMMOND 230 KV TRANSMISSION LINE, REACTOR INSTALLATION

Description: Install a 3% reactor at Hammond along the Anniston – Hammond 230 kV transmission

line.

Supporting

Statements:

The Anniston – Hammond 230 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: BARRY – ELLICOTT 230 KV, SERIES REACTORS INSTALLATION

Description: Install new series reactors on the Barry – Ellicott 230 kV transmission line needed to

address short circuit constraints and also create short circuit margin. Potential Tap

sizes of 0.5% or 1.0% reactors.

Supporting

Statements:

The project addresses short circuit constraints.

In-Service

2028

Year:

Project Name: BARTLETTS FERRY – BACKWATER TAP 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 1.27 miles of the Bartletts Ferry – Backwater Tap section of the Bartletts

Ferry – West Point (APC) 115 kV transmission line with 200°C 1351 AAC conductor.

Replace switch with higher rated switch.

Supporting

A multiple contingency event causes the Bartletts Ferry – West Point (APC) 115 kV

Statements: transmission line to overload.

In-Service

Year:

Project Name: BARTLETTS FERRY – WEST POINT 115 KV TRANSMISSION LINE, REBUILD

2028

Description: Rebuild ~2.42 miles of 115 kV transmission line from Back Water Tap – Bartletts Ferry

Dam from 100°C 636 26/7 ACSR conductor to 200°C 1351 54/19 ACSS conductor.

Supporting

The Bartletts Ferry – West Point Dam 115 kV transmission line overloads under

Statements: contingency.

In-Service

2028

Year:

Project Name: BOWEN, SERIES REACTOR INSTALLATION

Description: Install new series reactors on the low side of the Bowen 500/230 kV autotransformer.

Supporting Statements:

This project supports new generation interconnection in the area.

In-Service

2028

Year:

Project Name: BREMEN – CROOKED CREEK 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 29.5 miles of transmission line from Crooked Creek TS to

Indian Creek Metering Station with 100°C 397 30/7 ACSR conductor to 200°C 1351

ACSS conductor.

Supporting

Statements:

The Bremen – Crooked Creek 115 kV transmission line overloads under contingency.

In-Service

Year:

2028

Project Name:

CARTERSVILLE – EMERSON 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 5.3 miles of the Cartersville – Emerson 230 kV transmission line with (2) 200°C

1351 ACSS Martin conductor and replace limiting line elements.

Supporting

Statements:

The Cartersville – Emerson 230 kV transmission line overloads under contingency

In-Service

Year:

Project Name: CENTRE – HAMMOND 115 KVTRANSMISSION LINE, REACTOR INSTALLATION

Description: Install a 2% reactor at Hammond along the Centre – Hammond 115 kV transmission

line.

2028

Supporting

Statements:

The Centre – Hammond 115 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: NEW MERIDIAN 230 KV SUBSTATION, CONSTRUCT

Description: Construct a new 7.2 mile 230 kV loop in new 230 kV substation with 1351 ACSS at

200°C.

Supporting

This project addresses multiple thermal overloads that occur under contingency and

Statements: supports load growth in the area.

In-Service

2028

Year:

Project Name: LAUDERDALE WEST – PLANT SWEATT 230KV, CONSTRUCT

Description: Construct a new 10 mile Lauderdale West – Plant Sweatt 230 kV transmission line with

1351 ACSS at 200°C.

Supporting

Statements:

Alleviates loading on the Lauderdale West – Enterprise 230 kV transmission line.

In-Service

2028

Year:

Project Name: CORN CRIB – LAGRANGE 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor a section of the Corn Crib – LaGrange 115 kV transmission line with 200°C

397 ACSS conductor. Replace limiting elements at Corn Crib.

Supporting A multiple contingency event causes a section of the Corn Crib – LaGrange 115 kV

Statements: transmission line to overload.

In-Service

2028

Year:

Project Name: **DEER CREEK 500/230 KV, NEW SUBSTATION, CONSTRUCT**

Description: Build the new Deer Creek 500/230 kV substation splitting the Bonaire Primary –

Scherer 500 kV transmission line. Install two 500/230 kV autotransformers and build two bundled 200°C 1351 ACSS Martin 230 kV transmission lines from Deer Creek to

Little Deer Creek substations.

Supporting

This project provides operational and maintenance flexibility, which increases reliability

Statements: and supports load growth in the area.

In-Service

2028

Year: Project Name:

DYER ROAD – EAST ROANOKE 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 20.7 miles from Dyer Road to Wansley tap on the Dyer Road – East Roanoke

(APC) 115 kV transmission line with advanced Everglades C7 conductor.

Supporting

Statements:

Dyer Road – East Roanoke (APC) 115 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: EAST VILLA RICA, NEW SWITCHING STATION, CONSTRUCT

switching station east of Villa Rica.

Supporting

Description:

The transmission network upgrades increase reliability and support load growth in the

Build a 230 kV substation along the right of way of the (3) 230 kV transmission line

Statements: area.

In-Service

2028

Year:

Project Name: EUTAW – GREENE COUNTY 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild ~28 miles of 115 kV transmission line from Eutaw TS to Greene County SP from

100°C 397 ACSR 26/7 conductor to 200°C 795 ACSS 26/7 conductor.

Supporting

Statements:

The Eutaw – Greene County 115 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: FIRST AVENUE – NORTH COLUMBUS 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 0.9 mile of the North Columbus – First Avenue 115 kV transmission line with

200°C 1351 ACSS conductor. The First Ave – Goat Rock 115 kV transmission line will be reconductored with 200°C 1351 ACSS conductor due to common structures with North

Columbus – First Avenue 115 kV transmission lines.

Supporting

The North Columbus – First Avenue 115 kV transmission line overloads under

Statements:

contingency.

In-Service

2028

Year:

Project Name: FITZGERALD – PITTS 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild Pitts to Whittle segment of the Fitzgerald – Pitts 115 kV transmission line with

200°C 1351 ACSS conductor and reconductor the Whittle to HWY 233 segment with

100°C 762 ACSR conductor.

Supporting

Statements:

The Fitzgerald – Pitts 115 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: GASTON – BYNUM 230 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade approximately 38.5 miles of the Gaston – Bynum 230 kV transmission line

from 100°C 1033 45/7 ACSR conductor to 125°C 1033 45/7 ACSR conductor.

Supporting

The Bynum – Gaston 230 kV transmission line overloads under contingency.

Statements:

In-Service

Year:

2028

Project Name:

GORDON 115 KV, OVERSTRESSED BREAKER REPLACEMENT

Description: The breaker duty margin for the two 115 kV breakers will become negative starting on

5/15/2028. Replace them with 115 kV higher rated breakers.

Supporting This project is needed to increase breaker duty margins at Gordon substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service Year:

Project Name: GTC: BARNEYVILLE – EAST MOULTRIE 115 KV, NEW TRANSMISSION LINE,

CONSTRUCT

2028

Description: Build approximately 20 miles of a new 115 kV transmission line from Barneyville to East

Moultrie with 200°C 1351 ACSS.

Supporting The Barneyville – Pine Grove Primary 115 kV transmission line and Barneyville –

Statements: Douglas 115 kV transmission line overload under contingency.

In-Service

Year:

Project Name: GTC: BONAIRE PRIMARY 500/230 KV, TRANSFORMER REPLACEMENT AND RELAY

MODERNIZATION

Description: Replace 500/230 kV autotransformer C with a new autotransformer. Replace obsolete

relay panels.

2028

Supporting Replacement of obsolete relays and major equipment at Bonaire Primary needed due

Statements: to ongoing maintenance issues.

In-Service

Year:

2028

Project Name:

GTC: BOSTWICK - EAST SOCIAL CIRCLE 230 KV TRANSMISSION LINE, RECONDUCTOR

Description:

Reconductor approximately 10.8 miles of the East Social Circle – East Watkinsville 230 kV transmission line from 1033 ACSR Curlew conductor to 200°C 1033 ACCS conductor.

Supporting

Statements:

The Bostwick – East Social Circle 230 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: GTC: DYER ROAD – SOUTH COWETA 115 KV TRANSMISSION LINE, REBUILD (PHASE 1)

Description:

Rebuild the 12.6 miles section of the Dyer Road – South Coweta 115 kV transmission

line with 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Dyer Road – South Coweta 115 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: GTC: MCDONOUGH – SOUTH GRIFFIN 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the McDonough – South Griffin 115 kV transmission line with 200°C 1351 ACSS Martin conductor. Replace limiting switches and jumpers with higher rated equipment.

Supporting Statements:

The McDonough – South Griffin 115 kV transmission line overloads under contingency.

102

In-Service

Year:

2028

Project Name:

GTC: NEW HAMPTON 230/115 KV, NEW SUBSTATION, CONSTRUCT

Description:

Construct a new 230/115 kV substation next to the existing Hampton 115 kV substation. The new substation will serve the Henderson Farms load as well as the

existing Hampton 115 kV substation.

Supporting

Statements:

The project will address multiple thermal overloads that occur under contingency.

In-Service

2028

Year:

Project Name: GTC: NORTH DUBLIN 230/115 KV TRANSFORMERS AND BUS-TIE BREAKER,

REPLACEMENT

Description: Replace North Dublin 230/115 kV Banks A & B with two new 230/115 kV auto

transformers. Replace North Dublin 230 kV bus-tie breaker with a new breaker.

Replace North Dublin 115 kV bus-tie breaker with a new breaker.

Supporting

Statements:

Replacement of major equipment needed due to ongoing maintenance issues.

In-Service

2028

Year:

Project Name: GTC: SOUTH COWETA BANK A LIMITING ELEMENTS, REMOVAL

Description: Replace limiting elements associated with the South Coweta 230/115 kV

autotransformer with higher rating.

Supporting

South Coweta 230/115 kV autotransformer overloads under contingency.

Statements:

In-Service

2028

Year:

Project Name: GTC: RUM CREEK 500 KV, NEW SWITCHING STATION, CONSTRUCT

Description: Construct the Rum Creek 500 kV breaker and a half switching station.

Loop in the existing Bonaire Primary – Scherer and Ohara – Scherer 500 kV

transmission lines. . Construct the new Big Smarr - Rum Creek 500 kV transmission line

using 100°C (3) 1113 ACSR Bluejay conductor and terminate.

Supporting

Bonaire Primary 500/230 kV Bank C and the Bonaire Primary – Dorsett 230 kV

Statements:

transmission line overload under contingency.

In-Service

2028

Year:

Project Name: HAMMOND, REACTORS INSTALLATION

Description: Install a new 3% reactor at Hammond on the 230 kV bus for the Anniston – Hammond

230 kV transmission line. Install a 2% reactor at Hammond on the 115 kV bus for the

Hammond – Weiss Dam 115 kV transmission line.

Supporting

Statements:

The Anniston (APC) – Hammond 230 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: HAMPTON AREA 115 TO 230 KV, CONVERSION

Description: Convert Hampton – Ohara 115 kV and Jonesboro – Ohara 115 kV to create a new

Jonesboro – Hampton 230 kV transmission line. Convert the Hampton – South Griffin 115 kV transmission line to 230 kV operation. Loop in the Jonesboro – Ohara 115 kV transmission line through Bonanza so it is not radial. Install a new 230/115 kV

autobank at Jonesboro.

Supporting Statements:

The project will address multiple thermal overloads that occur under contingency.

104

In-Service

2028

Year:

Project Name: LINE CREEK, TERMINAL EQUIPMENT REPLACEMENT

Description: At Line Creek, upgrade terminal equipment on the Line Creek – Yates 230 kV, Line

Creek – Union City 230 kV, and Line Creek – Morrow 230 kV transmission lines with

higher rated equipment.

Supporting

Statements:

Multiple lines at Line Creek overload under contingency.

In-Service

2028

Year:

Project Name: LLOYD SHOALS – PORTERDALE PRIMARY 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a portion (approximately 15.8 miles) of the Lloyd Shoals – Porterdale Primary

115 kV transmission line with 200°C 1351 ACSS Martin conductor.

Supporting The Lloyd Shoals – Porterdale Primary 115 kV transmission line overloads under

Statements: contingency.

In-Service

2028

Year:

Project Name: MARTIN DAM – CROOKED CREEK #1 115 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade 16 miles of the Martin Dam – Crooked Creek #1 115 kV transmission line from

Martin Dam to Dadeville to 125°C 397 30/7 ACSR conductor.

Supporting

The Martin Dam – Crooked Creek (1) 115 kV transmission line overloads under

Statements: contingency.

In-Service

2028

Year: Project Name:

MARTIN DAM – CROOKED CREEK #2 115 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade 16 miles of the Martin Dam – Crooked Creek #2 115 kV transmission line from

Martin Dam to Dadeville to 125°C 397 30/7 ACSR conductor.

Supporting

The Martin Dam – Crooked Creek #2 115 kV transmission line overloads under

Statements: contingency.

In-Service

2028

Year:

Project Name: MCINTOSH 230 KV, BREAKER CONTROL RELAY UPGRADES

Description: Replace existing twenty230 kV breaker control relays with twenty high speed breaker

control relays at the McIntosh 230 kV breaker and a half bus.

Supporting Protection analysis identified the project modifications are required due to the

Statements: interconnection of the proposed generating facility.

In-Service

2028

Year:

Project Name: MEAG: BRUMBLEY CREEK – SOUTH BAINBRIDGE 115 KV TRANSMISSION LINE,

REBUILD

Description: Rebuild approximately 2.1 miles of the South Bainbridge – Thomasville 115 kV

transmission line with 200°C 1351 ACSS conductor.

Supporting The South Bainbridge – Thomasville 115 kV transmission line overloads under

Statements: contingency.

In-Service

2028

Year:

Project Name: MEAG: NEW SOUTH GRIFFIN 230/115 KV, NEW SUBSTATION, CONSTRUCT

Description: Build a new 230/115 kV substation and relocate all transmission lines except for the

South Coweta and Griffin #1 115 kV transmission lines from the existing South Griffin substation. Terminate the newly converted Hampton 230 kV transmission line at South

Griffin.

Supporting Statements:

The project will address multiple thermal overloads that occur under contingency.

In-Service

2028

Year:

Project Name: MEAG: THOMASVILLE 230/115 KV AUTOBANK, REPLACEMENT

Description: Replace the 230/115 kV autotransformer #4 at Thomasville substation.

Supporting The 230/115 kV autotransformer #4 at Thomasville substation overloads under

Statements: contingency.

In-Service

2028

Year:

Project Name: MILLER SP 500 KV, BREAKER INSTALLATION

Description: Install a 500 kV breaker at Miller SP.

Supporting

Statements:

This project addresses multiple thermal overloads that occur under contingency. This project provides additional operational and maintenance flexibility, which increases

reliability.

In-Service

Year:

2028

Project Name:

OHARA 115 KV, TARGETED EQUIPMENT REPLACEMENT

Description:

The breaker duty margin for one 115 kV breaker will become negative starting on

6/01/2030. Replace it with 115 kV higher rated breaker.

Supporting

This project is needed to increase breaker duty margins at Ohara substation to comply

Statements: with NERC TPL-001-05, Section 2.3.

In-Service

2028

Year:

Project Name: PITTMAN ROAD – WEST POINT DAM (USA) 115 KV TRANSMISSION LINE,

RECONDUCTOR

Description: Reconductor the Pittman Road – West Point Dam (USA) 115 kV transmission line with

200°C 336 ACSS conductor. Replace 750 AAC jumper at Pittman Road 115 kV with 1590

AAC conductor.

Supporting

The Pittman Road – West Point Dam (USA) 115 kV transmission line overloads under

Statements:

contingency.

In-Service

2028

Year:

Project Name: PLANT YATES 230 KV BREAKER AND HALF SUBSTATION, REBUILD

Description: Rebuild the Yates 6 & 7 substation to a breaker and a half configuration.

Supporting

Statements:

Yates 6 & 7 needs to be rebuilt to facilitate new generation.

In-Service

2028

2028

Year: Project Name:

RAINBOW DRIVE AREA, CAPACITOR INSTALLATION

Description: Install a 115 kV capacitor bank at Ellenwood substation.

Supporting Statements:

The Rainbow Drive area experiences voltage issues under a contingency.

In-Service

Year:

Project Name: MORROW BANK A LIMITING ELEMENTS, REMOVAL

Description: Upgrade limiting 115 kV switch at Morrow to a higher rating.

Supporting

Statements:

Switch exceeds its thermal rating under contingency.

In-Service

2028

Year:

Project Name: SAV: COLEMAN – DEAN FOREST 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire Coleman – Dean Forest 115 kV transmission line, approximately 6.7

miles of 100°C 477 Hawk conductor, with 200°C 1351 ACSS Martin conductor. At Chatham County, upgrade jumpers and bus. At Dean Forest, remove limiting elements by upgrading jumpers. Rebuild approximately 1.7 miles of the Coleman – Meldrim

transmission line section due to common structures.

Supporting Statements:

The Coleman – Dean Forest 115 kV transmission line overloads under contingency.

109

In-Service

2028

Year: Project Name:

SAV: GOSHEN (SAV) - MCINTOSH 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the Goshen (Savannah) – Georgia Pacific (Rincon) section, approximately 6.7 miles, of the Goshen (Sav) – McIntosh 115 kV transmission line using 200°C 1351 ACSS

conductor.

Supporting

Statements:

The Goshen (Sav) – McIntosh 115 kV transmission line overloads under contingency.

In-Service

2028

Year:

Project Name: SAV: RICE HOPE, NEW 230/115 KV AUTOTRANSFORMER, INSTALL

Description: Install a new 230/115 kV autotransformer at Rice Hope and loop in the Crossgate –

McIntosh 230 kV transmission line.

Supporting

Statements:

This project will address multiple thermal overloads that occur under contingency.

In-Service

2028

Year:

Project Name: THURLOW DAM – PIN OAKS 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 21 miles of 100°C 397 ACSR conductor from Thurlow Dam

to Pin Oaks to 200°C 795 ACSS conductor.

Supporting

Statements:

The Thurlow Dam – Notasulga 115 kV transmission line overloads under contingency.

In-Service

Year:

2028

Project Name:

UNION CITY - LINE CREEK - YATES 230 KV TRANSMISSION LINES, REBUILD

Description:

Rebuild the entire Union City – Line Creek – Yates 230 kV transmission lines

(approximately 23.4 miles) with bundled 200°C 1351 ACSS Martin conductor. Upgrade

limiting elements at substations along the transmission line.

Supporting

The Line Creek – Union City 230 kV and Line Creek – Yates 230 kV transmission lines

Statements: ov

overload under contingency.

In-Service

Project Name:

2028

Year:

PS: UNION SPRINGS 115 KV, NEW SWITCHING STATION, CONSTRUCT

Description: Construct a new 115 kV switching station to sectionalize an approximately 54 mile

transmission path with 5 delivery points.

Supporting

Statements:

Reduce exposure and improve the reliability to the existing area delivery points.

In-Service

2028

Year:

Project Name: VILLA RICA SUBSTATION, UPGRADES

Description: Add a new 500/230 kV autotransformer at Villa Rica, and loop in and out the Bowen –

Union City 500 kV transmission line into Villa Rica. Reconfigure the 230 kV side of the

substation.

Supporting

The transmission network upgrades increase reliability and support load growth in the

Statements: a

area.

In-Service

Year:

Project Name: WEST MCINTOSH, 230 KV LOW SIDE BREAKERS, REPLACEMENT

Description: Replace two 230 kV low side breakers at West Mcintosh with new with higher rated

breakers.

2028

Supporting Protection analysis identified the project modifications are required due to the

Statements: interconnection of the proposed generating facility.

In-Service

2029

Year:

Project Name: ANNISTON – BYNUM 115 KV TRANSMISSION LINE, REACTOR INSTALLATION

Description: Install a 2%reactor along the Anniston – Bynum 115 kV transmission line.

Supporting

Statements:

The Anniston – Bynum 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: ASHLEY PARK 500 KV BREAKERS, INSTALLATION

Description: At Ashley Park, install three new 500 kV breakers and associated equipment to

accommodate for the new Wansley and Villa Rica 500 kV transmission lines.

Supporting

Statements:

This project addresses thermal overloads that occur under contingency.

In-Service

2029

Year: Project Name:

ASHLEY PARK-WANSLEY 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description:

Construct an approximately 35 mile 500 kV transmission line from Ashley Park to

Wansley with 100°C (3) 1113 Bluejay ACSR.

Supporting

Statements:

This project addresses thermal overloads that occur under contingency.

In-Service

2029

Year:

Project Name: ATKINSON – NORTHWEST 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 1.2 miles of the Atkinson – Northwest 115 kV transmission line with 200°C

1351 ACSS Martin conductor.

Supporting

Statements:

The Atkinson – Northwest 115 kV transmission line overloads under a contingency.

In-Service

2029

Year:

Project Name: PS: BASSETT CREEK – TENSAW 230 KV (LOWMAN 230 KV), NEW TRANSMISSION LINE,

CONSTRUCT

Description: Loop in the existing Bassett Creek – Tensaw 230 kV transmission line into Lowman 230

kV station as new tie lines between PS and SOCO. Requires the construction of ~7 miles

of new 230 kV transmission line.

Supporting

Prevents thermal overloading under contingency after addition of new generation at

Statements: Lowman.

In-Service

2029

Year:

Project Name: BASSETT CREEK – TENSAW 230 KV TRANSMISSION LINE, LOOP-IN

Description: Loop the existing Bassett Creek – Tensaw 230 kV transmission line into the PowerSouth

Lowman 230 kV substation.

Supporting The Barry – CAES 115 kV transmission line and the Bucks – Ellicott 230 kV transmission

Statements: line overload under contingency. This loop-in alleviates those overloads.

In-Service

Year:

Project Name: BOULEVARD – VIRGINIA AVENUE 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 0.94 miles of the Boulevard – Virginia Avenue 230 kV transmission line with

200°C 1351 ACSS Martin conductor. Replace the limiting elements on the transmission

line.

2029

Supporting The Boulevard – Virginia Avenue 230 kV transmission line overloads under a multiple

Statements: contingency event.

2029

In-Service

Year:

Project Name: BUZZARD ROOST – FACTORY SHOALS 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Build 2 miles of new 230 kV transmission line from Buzzard Roost to Factory Shoals

with 200°C 1351 ACSS Martin.

Supporting

Statements:

The Douglasvile – Groover Lake 115 kV line overloads under contingency.

In-Service

Year:

Project Name: CALVERT – WEST MCINTOSH 230 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor 12 miles of the Calvert-West McIntosh 230 kV transmission line from

100°C 1351 54/19 ACSR conductor to 180°C Katmai ACCS C7 Advanced Conductor.

Supporting

Statements:

The Calvert – West McIntosh 230 kV transmission line overloads under contingency.

In-Service

2029

2029

Year:

Project Name: CENTRE – HAMMOND 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 15 miles of the Centre – Hammond 115 kV transmission

line from 100°C 397.5 ACSR 26/7 conductor to 200°C 795 ACSS 26/7 conductor.

Supporting

Statements:

The Centre – Hammond 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: CONYERS – KLONDIKE 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Build a new 7.2 mile transmission line from Conyers to Klondike with 200°C (2) 1351

ACSS Martin conductor. Build one new 230 kV breaker terminal at Conyers and one

new 230 kV terminal at Klondike.

Supporting

The Sigman Rd – Cornish Mountain 115 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

Project Name:

COUNTY LINE RD TS 230 KV, REACTOR INSTALLATION

Description: Install a new 2% series reactor on the County Line – Gaston 230 kV transmission line.

Supporting

Statements:

The County Line – Gaston 230 kV transmission line overloads under contingency.

In-Service

2029

2029

Year:

Project Name: **DEMOPOLIS – SELMA 115 KV TRANSMISSION LINE, RECONDUCTOR/UPGRADE**

Description: Reconductor approximately 5 miles of Demopolis – Selma 115 kV transmission line

from Demopolis to Sonat (Gallion). Upgrade 7.3 miles from Sonat (Gallion) to

Faunsdale TS.

Supporting

Statements:

The Demopolis – Selma 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: EAST POINT – MORROW 115 KV TRANSMISSION LINE LIMITING ELEMENTS,

REPLACEMENT

Description: Remove limiting elements at the substation terminals for the East Point – Morrow 115

kV transmission lines. This involves upgrading associated switches and jumpers with

higher rating equipment.

Supporting

Statements:

The East Point – Morrow 115 kV transmission line overloads under contingency.

In-Service

Year:

2029

Project Name:

PS: ELISKA SW - FREEMANVILLE SW. 115 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description:

Construct Eliska switching station on the Lowman – Belleville 115 kV transmission line and construct Freemanville switching station on the Atmore – Brewton 115 kV transmission line. Construct $^{\sim}26$ miles 115 kV transmission line between these two

new stations.

Supporting Statements:

Improve loading and voltage support in the area under contingency.

In-Service

2029

Year:

Project Name: GADSDEN – GULF STATES STEEL 115 KV TRANSMISSION LINE, RECONDUCTOR (PHASE

1)

Description: Reconductor approximately 2.5 miles of 397 26/7 ACSR conductor to 795 ACSR 26/7

conductor from Gulf States Steel to Morgan's Crossroads.

Supporting

Statements:

Provides additional operational and maintenance flexibility which then increases reliability. In addition, associated with replacing aging equipment at Gulf States Steel

DS.

In-Service

2029

Year:

Project Name: GOAT ROCK 230 KV, REACTORS INSTALLATION

Description: Install 1% series reactors on the Fortson – Goat Rock (Black) 230 kV and Fortson – Goat

Rock (White) 230 kV transmission lines.

Supporting

The Fortson – Goat Rock (Black and White) 230 kV transmission lines overload under

Statements: contingency.

In-Service

Year:

2029

Project Name:

GRADY - MORROW (WHITE) 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild transmission line sections with 200°C 1351 ACSS Martin conductor and replace

other limiting elements.

Supporting

Statements:

The Grady – Morrow (White) 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: GREENE COUNTY – NORTH SELMA 230 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade approximately 48 miles of Greene County – North Selma 230 kV transmission

line from 100°C 1033 45/7 ACSR conductor to 110°C conductor.

Supporting The Greene County – North Selma 230 kV transmission line overloads under

Statements: contingency.

In-Service

2029

Year:

Project Name: GRID: OFFERMAN – THALMANN (BLACK) 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Offerman – Thalmann (Black) 230 kV transmission line using 200°C 1351

ACSS conductor.

Supporting

The Offerman – Thalmann (Black) 230 kV transmission line overloads under

Statements:

contingency.

In-Service

Year:

2029

Project Name:

GRID: OFFERMAN - THALMANN (WHITE) 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the Offerman – Thalmann (White) 230 kV transmission line using 200°C 1351

ACSS conductor.

Supporting

The Offerman – Thalmann (White) 230 kV transmission line overloads under

Statements:

contingency.

In-Service

2029

Year:

Project Name: GTC: BARNESVILLE – SOUTH GRIFFIN 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description:

Construct a new 19 mile 230 kV transmission line from South Griffin substation to

Barnesville Primary substation with 200°C 1351 ACSS conductor.

Supporting

Statements:

The Barnesville – South Griffin 115 kV line overloads under contingency.

In-Service

2029

Year:

Project Name: GTC: BARNESVILLE PRIMARY – THOMASTON 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 13.24 miles of the Barnesville Primary – Thomaston 230 kV transmission line

with 200°C 1351 ACSS conductor. Replace line switches and jumpers.

Supporting

Barnesville Primary – Thomaston 230 kV transmission line overloads under

Statements:

contingency.

In-Service

2029

Year: Project Name:

GTC: BAY CREEK, SECOND 230/115 KV AUTOTRANSFORMER, INSTALLATION

Description:

Install a second 230/115 kV autotransformer at the Bay Creek substation.

Supporting

The Bay Creek – Monroe 115 kV transmission line overloads under contingency.

Statements:

In-Service

2029

Year:

Project Name: GTC: BUZZARD ROOST – THORNTON ROAD 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Buzzard Roost – Thornton Road 230 kV transmission line, approximately 1

mile, with 200°C 1351 ACSS conductor.

Supporting The Buzzard Roost – Thornton Road 230 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

2029

Project Name: GTC: CLARKSBORO – WINDER PRIMARY 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 14 miles of the Clarksboro – Winder 230 kV transmission line

with 200°C 1351 ACSS conductor.

Supporting

Statements:

The Clarksboro – Winder 230 kV transmission line overloads under contingency.

In-Service

Year:

2029

Project Name:

GTC: CLIFTONDALE - LINE CREEK 230 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Build a new 11.6 mile 230 kV transmission line from Cliftondale to Line Creek with

200°C 1351 ACSS Martin.

Supporting

The line is being built to resolve thermal issues in Metro West and network Metro

Statements: South.

In-Service

2029

Year:

Project Name: GTC: DAWSON CROSSING – NELSON (BLACK) TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 7.5 miles from Nelson to McClain Mountain to Big Canoe on the

Dawson Crossing – Nelson (Black) 115 kV transmission line with 200°C 795 ACSS

conductor or equivalent.

Supporting Dawson Crossing – Nelson (Black) 115 kV transmission line overloads under

Statements: contingency.

In-Service

2029

Year:

Project Name: GTC: DRESDEN – TALBOT 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: New 500 kV transmission line will be built from the new Talbot substation to Dresden

with 100°C 1113 ACSR conductor along with a new 500/230 kV substation.

Supporting

This strategic project will address multiple thermal overloads that occur under

Statements: contingency.

In-Service

Year:

2029

Project Name:

GTC: DRESDEN 230 KV, BREAKER REPLACEMENTS

Description: At Dresden, the breaker duty margin for five 230 kV breakers will become negative

starting on 6/01/2029. Replace them with 230 kV higher rated breakers.

Supporting This project is needed to increase breaker duty margins at Dresden substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: GTC: HEARD COUNTY 500 KV, BREAKER REPLACEMENTS

Description: The breaker duty margin for four 500 kV breakers will become negative starting on

10/01/2029. Replace them with 500 kV higher rated breakers.

Supporting This project is needed to increase breaker duty margins at Heard County substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: GTC: MCDONOUGH – SOUTH GRIFFIN 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the McDonough – South Griffin 115 kV transmission line with 200°C 1351 ACSS

Martin. Replace limiting switches and jumpers with higher rated equipment.

Supporting

Statements:

The McDonough – South Griffin 115 kV transmission line overloads under contingency.

In-Service

Year:

2029

Project Name:

GTC: NEW TENASKA – WANSLEY 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description:

Construct a 5 miles long 500 kV transmission line between Tenaska and Wansley with

(3) 1113 ACSR Bluejay conductor. Make all necessary accommodations at the

substations for the line termination.

Supporting Statements:

This project reduces multiple 500 kV transmission line loadings, and provides additional

operational and maintenance flexibility, which increases reliability.

In-Service

2029

Year:

Project Name: GTC: OHARA – SOUTH GRIFFIN 230 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor the 23 mile Ohara – South Griffin 230 kV transmission line section using

200°C 1351 ACSS conductor.

Supporting

Statements:

The Ohara – South Griffin 230 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: GTC: RUM CREEK – TOMOCHICHI (BLACK) 500 KV, NEW TRANSMISSION LINE,

CONSTRUCT

Description: Construct a second 500 kV transmission line from Rum Creek to Tomochichi (Black)

which is approximately 30 miles long with 100°C (3) 1113 ACSR Bluejay conductor. Make the necessary modifications at Rum Creek and Tomochichi to add breakers and

terminate the line.

Supporting

Statements:

This project addresses multiple thermal overloads that occur under contingency.

In-Service

.

2029

Year: Project Name:

GTC: TALBOT CO #1 230 KV, BREAKER REPLACEMENTS

Description: The breaker duty margin for six 230 kV breakers will become negative starting on

6/01/2029. Replace them with 230 kV higher rated breakers.

Supporting This project is needed to increase breaker duty margins at Talbot Co. #1 substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: GTC: TALBOT CO #2 230 KV, BREAKER REPLACEMENTS

Description: The breaker duty margin for four 230 kV breakers will become negative starting on

6/01/2029. Replace them with 230 kV higher rated breakers.

Supporting This project is needed to increase breaker duty margins at Talbot CO #2 substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: GTC: UNION CITY PRIMARY 230 KV, BREAKER REPLACEMENTS

Description: At Union City Primary, the breaker duty margin for eleven 230 kV breakers will become

negative starting on 4/01/2029. Replace them with 230 kV higher rated breakers.

Supporting

This project is needed to increase breaker duty margins at Union City Primary

Statements: substation to comply with NERC TPL-001-05, Section 2.3.

In-Service

Year:

2029

2029

Project Name:

HICKORY LEVEL - POST RD 115 KV TRANSMISSION LINE, REBUILD (PHASE 1)

Description: Rebuild the 1.15 mile portion from Hickory Level to South Villa Rica J with 200°C 1351

ACSS Martin conductor.

Supporting

Statements:

The Hickory Level – Post Rd 115 kV transmission line overloads under contingency.

In-Service

Year:

Project Name:

HOLT STREET – CARTER HILL RD 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor 1.81 miles of 100°C 397 ACSR 18/1 conductor to 100°C 795 ACSR 45/7

conductor from Holt Street to Carter Hill Rd.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

.

Year:

Project Name: JACKSON SHOALS – LOGAN MARTIN DAM 115 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade approximately 18 miles of Jackson Shoals – Logan Martin Dam 115 kV

transmission line from 100°C 795 ACSR 26/7 conductor to 125°C 795 ACSR 26/7

conductor.

2029

Supporting

The Jackson Shoals – Logan Martin Dam 115 kV transmission line overloads under

Statements: contingency.

In-Service

Year: Project Name:

KETTLE CREEK PRIMARY - PINE GROVE PRIMARY 115 KV TRANSMISSION LINE,

REBUILD

2029

Description: Rebuild approximately 38.04 miles of the Kettle Creek – Pine Grove Primary 115 kV

transmission line using 200°C 1351 ACSS conductor.

Supporting

Statements:

The Kettle Creek – Pine Grove 115 kV transmission line overloads under contingency.

In-Service

2029

2029

Year: Project Name:

MARTIN DAM - PEAR TREE 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor 20.5 miles of 115 kV transmission line from Martin Dam – Pear Tree from

100°C 397 ACSR 26/7 conductor to 200°C 795 ACSS 26/7 conductor.

Supporting

Statements:

The Martin Dam – Pear Tree 115 kV transmission line overloads under contingency.

In-Service

Year:

Project Name:

MCEVER ROAD - SHOAL CREEK 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 3.05 miles of the McEver Road – Shoal Creek 115 kV

transmission line with 200°C 1351 ACSS conductor.

Supporting

Statements:

The McEver Road – Shoal Creek 115 kV transmission line overloads under contingency.

In-Service

Year:

Project Name: MEAG: AULTMAN ROAD - FORT VALLEY #1 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 8 miles of the Aultman Road – Fort Valley #1 115 kV

transmission line with 200°C 1351 ACSS conductor.

Supporting The Aultman Road – Fort Valley #1 115 kV transmission line overloads under

Statements: contingency.

In-Service

2029

2029

Year:

Project Name: MEAG: SLAPPEY DRIVE - WESTOVER 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 2.92 miles of Slappey Drive - Westover 115 kV transmission line

with 200°C 1351 ACSS conductor.

Supporting

Statements:

Slappey Drive – Westover 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: MERIDIAN NORTHEAST – LAUDERDALE WEST 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 6.11 mile Meridian Northeast - Lauderdale West 230 kV transmission line

with 200°C 1351 ACSS conductor.

Supporting

Line overloads under contingency.

Statements:

In-Service

Year:

2029

Project Name:

MORROW 115 KV, BREAKER REPLACEMENTS

Description:

At Morrow, the breaker duty margin for one 115 kV breaker will become negative

starting on 6/01/2029. Replace the breaker with a higher rated breaker.

Supporting

This project is needed to increase breaker duty margins at Morrow substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: MOSS POINT EAST – PASCAGOULA BAYOU CASOTTE 115 KV, NEW TRANSMISSION

LINE

Description: Construct approximately 2.7 miles of new 1033.5 ACSR 115 kV transmission line at

100°C from Moss Point East and connect into the existing BP Amoco to Pascagoula

Bayou Cassotte 115 kV transmission line.

Supporting

The Moss Point East – Pascagoula MS Chemical 115 kV transmission line overloads

Statements: under contingency.

In-Service

2029

Year:

Project Name: NORCROSS – NORTH DRUID HILLS 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 3.9 miles of the Norcross – North Druid Hills 115 kV

transmission line with 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Norcross – North Druid Hills 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: OPP – SOUTH ENTERPRISE 230 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 25 miles of the Opp – South Enterprise 230 kV

transmission line from 125°C 795 ACSR 26/7 conductor to 200°C 1351.5 ACSS 54/19

conductor.

2029

Supporting

Statements:

The Opp – South Enterprise 230 kV transmission line overloads under contingency.

In-Service

Year:

Project Name: HURRICANE CREEK 230/115 KV AUTOBANK, REPLACEMENT

Description: Replace the Hurricane Creek 230/115 kV auto bank.

Supporting

Statements:

Transformer overloads under contingency.

In-Service 2029

Year:

Project Name: SAV: BOULEVARD – MAGNOLIA – TRUMAN PARKWAY 115 KV TRANSMISSION LINES,

REBUILD

Description: Rebuild 3 miles of the Magnolia – Truman Parkway 115 kV from 75°C 927 ACAR to

200°C 1351 ACSS Martin conductor or higher rated conductor. Upgrade switches at Magnolia substation to a higher rating switches and jumpers at Truman Parkway. Rebuild the entire Boulevard to Magnolia 115 kV transmission line, approx. 4.56 miles of 100°C 795 ACSR Drake conductor, using 200°C 1351 ACSS Martin conductor or

higher rated conductor. At Magnolia, replace a switch with a higher rating.

Supporting

The Magnolia – Truman Parkway 115 kV and Boulevard – Magnolia 115 kV

Statements: transmission lines overload under contingency.

In-Service

Year:

2029

Project Name:

SAV: COLEMAN - MELDRIM 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the Coleman – Meldrim 115 kV transmission line from Four Lakes – Structure 76A, approximately 8.1 miles of 477 ACSR Hawk conductor, using 200°C 1351 ACSS

Martin conductor. Upgrade Quacco Rd Switches to a higher rating.

Supporting

Statements:

The Coleman – Meldrim 115 kV transmission line overloads under contingency.

In-Service

2029

Year:

Project Name: SAV: DEAN FOREST – LITTLE OGEECHEE 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire transmission line from Little Ogeechee to Salt Creek and Salt Creek

to Dean Forest, approximately 8 miles, using 200°C 1351 ACSS Martin conductor.

Upgrade jumpers at the Little Ogeechee terminal.

Supporting

The Dean Forest – Little Ogeechee 230 kV transmission line overloads under

Statements:

contingency.

In-Service

2029

Year:

Project Name: SAV: LITTLE OGEECHEE 230/115 KV, BANK REPLACEMENT

Description: Replace SATX 230/115 kV autotransformer.

Supporting

Statements:

The SATX 230/115 kV autotransformer overloads under contingency.

In-Service

Year:

2029

Project Name:

SOUTH TUSCALOOSA – 31ST AVENUE 115 KV TRANSMISSION LINE, RECONDUCTOR

Description:

Reconductor approximately 6.3 miles of S Tuscaloosa – 31st Ave 115 kV transmission line from 795 ACSR conductor with Southwire 180°C C7 973 ACCS 20/7 conductor.

Supporting

The South Tuscaloosa – 31st Avenue 115 kV transmission line overloads under

Statements:

contingency.

In-Service

2029

Year:

Project Name: TENASKA 500 KV, BREAKER REPLACEMENTS

Description: The b

The breaker duty margin for five 500 kV breakers will become negative starting on

10/1/2029. Replace the breakers with 500 kV higher rated breakers.

Supporting

This project is needed to increase breaker duty margins at Tenaska substation to

Statements:

comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: THOMASTON 230 KV, NETWORK AREA IMPROVEMENT

Description:

Rebuild the radial Thomaston – Butler 115 kV transmission line to 230 kV network operation. Build new 230 kV breaker and a half switching station to replace end of life equipment. Make all necessary upgrades and accommodations at the substation along

the line.

Supporting

Statements:

Line conversion increases capacity in the Butler area and ability to move increase solar generation from the South to the North. A new 230 kV breaker and a half switching

station provides better reliability and replaces end of life equipment.

In-Service

2029

Year:

Project Name: VIRGINIA AVENUE – WABASH AVENUE 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 1.5 miles of the Virginia Avenue – Wabash Avenue 230 kV transmission line

with 200°C 1351 ACSS Martin conductor. Replace the limiting elements on the line.

Supporting

The Virginia Avenue – Wabash Avenue 230 kV transmission line overloads under a

Statements: multiple contingency event.

In-Service

2029

Year:

Project Name: WANSLEY 500 KV, OVERSTRESSED BREAKER REPLACEMENTS

Description: The breaker duty margin for ten 500 kV breakers will become negative starting on

6/1/2029. Replace them with 500 kV higher rated breakers.

Supporting

This project is needed to increase breaker duty margins at Wansley substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2029

Year:

Project Name: WANSLEY 500 KV, OVERSTRESSED BREAKER REPLACEMENTS

Description: The breaker duty margin for six 500 kV breakers will become negative starting on

6/1/2029. Replace them with 500 kV higher rated breakers.

Supporting

This project is needed to increase breaker duty margins at Wansley substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

Year:

Project Name: WIGGINS SWITCHING STATION – HURRICANE CREEK 115 KV TRANSMISSION LINE,

REBUILD

2029

Description: Rebuild the 8.75 mile Wiggins Switching Station – Hurricane Creek 115 kV transmission

line with 100°C 1033 ACSR conductor.

Supporting

Statements:

Line overloads under contingency.

In-Service

2030

Year:

Project Name: ATTALLA – GULF STATES STEEL 115 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade approximately 2.5 miles of the Attalla – Gulf States Steel 115 kV transmission

line.

Supporting

Statements:

The Attalla – Gulf States Steel 115 kV transmission line overloads under contingency.

In-Service

Year:

2030

Project Name:

BAINBRIDGE TRANSMISSION: EAST RIVER ROAD, EAST BAINBRIDGE, NEW

SUBSTATION, CONSTRUCT

Description:

This project will construct a new 115 kV breaker and a half substation.

Supporting

This project is part of an overall reconfiguration of the Bainbridge area to improve the

Statements: distribution reliability, transmission security and operational flexibility.

In-Service

2030

Year:

Project Name: BASSETT CREEK – SUNNY SOUTH 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 16 miles of Bassett Creek – Sunny South SS 115 kV transmission

line from 100°C 397 ACSR conductor to 200°C 795 ACSS conductor.

Supporting The Bassett Creek – Sunny South 115 kV transmission line overloads under

Statements: contingency. Also, this project provides additional operational and maintenance

flexibility, which increases reliability.

In-Service

2030

Year:

Project Name: BASSETT CREEK – THOMASVILLE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 1.2 miles of 100°C 795 ACSR and 10.4 miles of 125°C 397 ACSR to 200°C 795

ACSS from Bassett Creek - Thomasville TS 115 kV transmission line.

Supporting The Bassett Creek – Thomasville 115 kV transmission line overloads under contingency.

Statements: Also, this project provides additional operational and maintenance flexibility, which

increases reliability.

In-Service

2030

Year:

Project Name: BESSEMER – SOUTH BESSEMER 115 KV TRANSMISSION LINE, RECONDUCTOR

(PHASE 2)

Description: Reconductor approximately 13 miles of the South Bessemer TS – Bessemer TS 115 kV

transmission line from 100°C 795 ACSR conductor to 200°C 795 ACSS 26/7 conductor.

Supporting The Bessemer – South Bessemer 115 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

2030

Project Name: BESSEMER – SOUTH BESSEMER 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 15 miles of 230 kV transmission line from Bessemer TS to South

Bessemer TS from 1033 ACSR 45/7 conductor to 200°C 1351 54/19 ACSS conductor.

Supporting

The Bessemer – South Bessemer 230 kV transmission line overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: BIG TAZEWELL – FARLEY 500 SS 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 500 kV line from Farley (APC) to Big Tazewell substation. Construct a 5

breaker 500 kV ring bus to loop in the Blacksmith – Talbot 500 kV line, terminate the new Big Tazewell – Farley 500 kV and Talbot #2 – Tazewell 500 kV lines. Install a

500/230 kV autotransformer to connect to the existing 230 kV switchyard.

Supporting

Statements:

This project addresses multiple thermal overloads that occur under contingency.

In-Service

2030

Year:

Project Name: BOWEN – JUDY MOUNTAIN 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Bowen – Judy Mountain 230 kV transmission line with 200°C (2)1351 ACSS

Martin conductor.

Supporting

This project is needed for generation interconnection.

Statements:

In-Service

2030

Year: Project Name:

BOWEN-BRANDON FARM RD 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild 0.05 miles of section with (3) Bundled 100°C Bluejay ACSR 1113 conductor on

the 230 kV Bowen – Pegamore transmission line and replace limiting elements.

Supporting

The Bowen – Brandon Farm Road 230 kV transmission line overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: BROADWAY – ECHECONNEE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Griffin Rd to Broadway section of the Broadway – Echeconnee 115 kV

transmission line (approximately 11.5 miles) with 200°C 1351 ACSS conductor.

Supporting

Statements:

The Broadway – Echeconnee 115 kV transmission line overloads under contingency.

In-Service

2030

Year:

Project Name: BROADWAY – SOUTH MACON 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Broadway to South Macon 115 kV transmission line (approximately 2

miles) with 200°C 1351 ACSS conductor. Replace limiting elements along the

transmission line.

Supporting

Statements:

The Broadway – South Macon line overloads under contingency.

In-Service

2030

Year: Project Name:

BUZZARD ROOST - TRIBUTARY 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild t

Rebuild the 2.8 miles Tributary - Thornton Road 230 kV transmission line with 200°C

1351 ACSS Martin conductor.

Supporting

Statements:

The Tributary – Thornton Road line overloads under contingency.

In-Service

2030

Year:

Project Name: CAVENDER DRIVE – WANSLEY 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Build a new 37 mile 500 kV transmission line from Cavender Drive to Wansley with (3)

100°C Bluejay 1113 ACSR. Make accommodations at the substations for the line

termination.

Supporting The new 500 kV transmission line mitigates multiple thermal overloads due to

Statements: contingencies in the area

In-Service

2030

Year:

Project Name: CORNELIA – TALLULAH LODGE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 9.7 miles of the Cornelia – Tallulah Lodge 115 kV transmission

line with 200°C 795 ACSS conductor.

Supporting

Statements:

The Cornelia – Tallulah Lodge 115 kV transmission line overloads under contingency.

In-Service

2030

Year:

Project Name:

DU: DAWSON CROSSING - NELSON (WHITE) 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 15.7 miles of the Dawson Crossing – Nelson (White) 115 kV

transmission line with 200°C 1351 ACSS Martin conductor.

Supporting The Dawson Crossing – Nelson (White) 115 kV transmission line overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: EAST POINT – TRIBUTARY 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 4.2 mile section from Cavender Drive – Marietta 25 with bundled 200°C

1351 ACSS conductor on the East Point – Tributary 230 kV transmission line.

Supporting

Statements:

The East Point – Tributary 230 kV transmission line overloads under a contingency.

In-Service

2030

Year:

Project Name: EAST POINT 230 KV BREAKER REPLACEMENTS

Description: At East Point, the breaker duty margin for one 230 kV breaker will become negative

starting on 06/01/2030. Replace it with 230 kV higher rated breaker.

Supporting

This project is needed to increase breaker duty margins at East Point substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

Year:

2030

Project Name:

EAST POINT 230 KV, SWITCH REPLACEMENT

Description:

Replace the switches and jumpers associated with the East Point – Tributary 230 kV

line with higher rated equipment.

Supporting

Statements:

Terminal equipment exceeds its thermal rating under contingency.

In-Service

2030

Year:

Project Name: ECHECONNEE – WELLSTON 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 1.5 miles of the North Warner Robins – South Warner Robins

segment of the Echeconnee – Wellston 115 kV transmission line with 200°C 1351 ACSS conductor and the limiting elements along the line with higher ratings. Replace the bus

and jumper at North Warner Robins with (2) 1590 AAC conductor.

Supporting

Statements:

The Echeconnee – Wellston 115 kV transmission line overloads under contingency.

In-Service

2030

Year:

Project Name: GAINESVILLE #2 – MCEVER ROAD 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 5.3 miles of the Gainesville #2 – McEver Rd 115 kV transmission

line with 200°C 1351 ACSS conductor.

Supporting

Statements:

The Gainesville #2 – McEver Rd 115 kV transmission line overloads under contingency.

In-Service

Year:

2030

Project Name: GLENWOOD SPRINGS – LAKE OCONEE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Glenwood Springs – Putnam Sawmill Jun – North Eatonton Junction section

of the transmission line with 200°C 1351 ACSS conductor.

Supporting The Glenwood Springs – Lake Oconee 115 kV transmission line overloads under base

Statements: case conditions.

In-Service

2030

Year:

Project Name: GLENWOOD SPRINGS 115 KV, CAPACITOR BANK INSTALLATION

Description: Install a 115 kV capacitor bank at Glenwood Springs substation.

Supporting

Statements:

Low bus voltage issues were identified on several 115 kV buses due to a contingency.

In-Service

2030

Year: Project Name:

GOLDENS CREEK – WARRENTON PRIMARY 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 0.34 miles of the Goldens Creek – Warrenton Primary 230 kV

transmission line with 200°C 1351 ACSS Martin conductor.

Supporting

The Goldens Creek – Warrenton Primary 230 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

2030

Project Name:

GORDON - SANDERSVILLE #1 115 KV TRANSMISSION LINE (DEEPSTEP-SAND #6),

REBUILD

Description:

Rebuild 10.49 miles of the Deepstep – Robins Spring, Robins Spring – Kaolin J, and Kaolin J – Sandersville #6 transmission line sections of the Gordon – Sandersville #1 115

kV transmission line with 100°C ACSR 795 conductor.

Supporting Statements:

The Gordon – Sandersville #1 115 kV transmission line overloads under contingency.

In-Service

2030

Year:

Project Name: GREENE COUNTY – S. BESSEMER 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct ~63 miles of new 500 kV transmission line from Greene County SP to S.

Bessemer. Construct a new 500/230 kV Bank and 500 kV switchyard at or near Greene County SP. Expand S. Bessemer TS 500 kV yard to accommodate the new line terminal.

Supporting

Statements:

The Greene County – Moundville 230 kV transmission line overloads under contingency. Reduces multiple additional 230 kV and 115 kV line loadings that overload

under contingency and provides additional operational and maintenance flexibility,

which increases reliability.

In-Service

2030

Year:

Project Name: GTC: BONAIRE PRIMARY – EASTMAN PRIMARY 115 KV TRANSMISSION LINE,

REBUILD

Description: Rebuild 41.08 miles of the Bonaire Primary – Eastman Primary 115 kV transmission line

with 200°C 1351 ACSS Martin conductor and upgrade the limiting bus at Roddy

substation with a higher rating.

Supporting

The Bonaire Primary – Eastman Primary 115 kV transmission line overloads under

Statements:

multiple contingencies

In-Service

2030

Year:

GTC: BUZZARD ROOST – ROCKHOUSE RD 230 KV TRANSMISSION LINE, REBUILD

Description:

Project Name:

Rebuild the Buzzard Roost – Rockhouse Rd 230 kV transmission line circuit 2,

approximately 0.81 mile, with 200°C 1351 ACSS conductor.

Supporting

The Buzzard Roost - Rockhouse Rd 230 kV transmission line circuit 2 overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: GTC: CAVENDER DRIVE, NEW 500/230 KV AUTOTRANSFORMER, INSTALLATION

Description: Cavender Drive will become a 500/230 kV station looping in the Villa Rica – Union City

500 kV transmission line, installing a 500/230 kV autotransformer.

Supporting

Statements:

The project will address multiple thermal overloads that occur under contingency.

In-Service

2030

Year:

Project Name: GTC: DOUGLASVILLE – EAST VILLA RICA SS 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 8.2 miles of the Douglasville – East Villa Rica 230 kV transmission line with

200°C 1351 ACSS Martin conductor.

Supporting

The Douglasville – East Villa Rica 230 kV transmission line overloads under a

Statements:

contingency.

In-Service

2030

Year:

Project Name: GTC: EAST WATKINSVILLE 230 KV, REACTOR INSTALLATION

Description: Replace series reactors at East Watkinsville on the Russell Dam 230 kV line.

Supporting Equipment on the East Watkinsville – Russell Dam 230 kV line overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: GTC: HARTWELL DAM – HARTWELL ENERGY 230 KV, SERIES REACTORS

REPLACEMENT

Description: Replace the series reactors on the Hartwell Dam – Hartwell Energy 230 kV line with

larger size.

Supporting The reactors on the Hartwell Dam – Hartwell Energy 230 kV line overload under

Statements: contingency.

In-Service

2030

Year:

Project Name: GTC: HARTWELL ENERGY – MIDDLE FORK 230 KV, NEW TRANSMISSION LINE,

CONSTRUCT

Description: Construct a new 230 kV transmission line, approx. 35 miles, from Hartwell Energy to

Middle Fork, using (2) 200°C 1351 ACSS conductor.

GTC: Expand Hartwell Energy 230 kV and Middle Fork 230 kV substations for the new

transmission line termination.

Supporting New 230 kV transmission line addresses multiple constraints that occur under

Statements: contingency along the eastern interface.

In-Service

Year:

2030

Project Name: GTC: POND FORK – MIDWAY 115 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: GTC: Construct approximately 6 miles of 115 kV transmission line with minimum 170°C

1351 ACSS conductor utilizing the existing GTC owned portion of the North Jackson – Lawrence Smith 46 kV ROW. Add a second 230/115 kV autotransformer at Pond Fork

substation.

Supporting

The future Banks Crossing – Pond Fork 115 kV transmission line overloads under

Statements: contingency due to an increase of load in the area.

In-Service

2030

Year:

Project Name: GTC: ROCKVILLE – TIGER CREEK -WARTHEN 500 KV, NEW TRANSMISSION LINES,

CONSTRUCT

Description: Build the new 500 kV transmission lines from Rockville to Tiger Creek and Tiger Creek

to Warthen, approximately 20 miles and 9 miles long, respectively with 100°C (3) 1113 ACSR Bluejay conductor. Build a 500 kV yard at Tiger Creek and install a 500/230 kV auto transformer. Make all necessary accommodations at Warthen and Rockville for

the new 500 kV breakers.

Supporting

Statements:

This project addresses several thermal constraints that occur under contingency.

In-Service

2030

Year:

Project Name: GTC: TALBOT #2 – BIG TAZEWELL 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Build a new 500 kV line from Big Tazewell to Talbot #2, approximately 20 miles. Make

all necessary accommodations at Big Tazewell and Talbot #2 for the new 500 kV

breakers and line termination.

Supporting

Statements:

This project addresses multiple thermal overloads that occur under contingency.

In-Service

Year:

2030

Project Name: GTC: THORNTON RD- CAVENDER DRIVE 230 KV, NEW TRANSMISSION LINE,

CONSTRUCT

Description: Build a new 7 mile 230 kV line from Cavender Drive to Buzzard Roost with 200°C 1351

ACSS Martin.

Supporting The new 230 kV transmission line from Cavender Drive to Buzzard Roost mitigates

Statements: multiple thermal overloads during a base case scenario.

In-Service

2030

2030

Year: Project Name:

GTC: UNION CITY, LINE TRAP REPLACEMENT

Description: Replace limiting line trap at Union City for the Ashley Park 500 kV line with a higher

rated equipment.

Supporting

Statements:

The Union City – Ashley Park 500 kV transmission line overloads under contingency.

In-Service

Year:

Project Name:

GTC: YATES - LINE CREEK (GREEN) 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 16.5 miles of the Yates – Line Creek (Green) 230 kV transmission line using

200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Yates – Line Creek 230 kV transmission line overloads under a contingency.

In-Service

2030

Year:

Project Name: GTC: YATES – LINE CREEK (RED) 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 16.5 miles of the Yates – Line Creek (Red) 230 kV transmission line using 200°C

1351 ACSS Martin conductor.

Supporting

Statements:

The Yates – Line Creek 230 kV transmission line overloads under a contingency.

In-Service

2030

Year:

Project Name: LINE CREEK 230 KV, IPO BREAKER UPGRADES

Description: Replace breakers at Line Creek with IPO (Independent Pole Operated) breakers.

Supporting This project is needed to increase breaker duty margins at Line Creek substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

Year:

2030

Project Name: **JEFFERSON ROAD – WINDER PRIMARY 115 KV TRANSMISSION LINE, REBUILD**

Description: Rebuild approximately 11 miles of the Jefferson Road – Winder Primary 115 kV

transmission line with 200°C 1351 ACSS Martin conductor.

Supporting The Jefferson Road – Winder Primary 115 kV transmission line overloads under

Statements: contingency.

In-Service

Year:

2030

Project Name:

KIA MOTORS – PITTMAN RD 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild a section of Kia Motors - Pittman Rd 115 kV transmission line with 200°C 1351

ACSS conductor.

Supporting

Statements:

Kia Motors – Pittman Rd 115 kV transmission line overloads under contingency.

In-Service

2030

Year:

Project Name: LAWRENCEVILLE – WINDER PRIMARY 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 1.2 miles of the Lawrenceville – Winder 115 kV transmission line

with 200°C 795 ACSS conductor.

Supporting The Lawrenceville – Winder Primary 115 kV transmission line overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: LEEDS TS – MOODY SS 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 5 miles of the Leeds – Moody 115 kV transmission line

from 100°C 795 45/7 ACSR conductor with 200°C 1033.5 45/7 ACSS conductor.

Supporting

The Leeds – Moody 115 kV transmission line overloads under contingency.

Statements:

In-Service

Year:

2030

Project Name: MARTIN DAM – NORTH AUBURN 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 27 miles of the Martin Dam – North Auburn 115 kV

transmission line from 100°C 397 ACSR 26/7 conductor to 200°C 795 ACSS 26/7

conductor.

Supporting

The Martin Dam – North Auburn 115 kV transmission line overloads under

Statements: contingency.

In-Service

2030

Year:

Project Name: MEAG: ATHENA – WARRENTON 230 KV TRANSMISSION LINE, CONVERSION

Description: Convert the Athena – Union Point – Ray Place Road – Warrenton Primary 115 kV

transmission lines to 230 kV operation using 200°C 1351 ACSS conductor. Add

230/115kV transformers at Union Point Primary and Ray Place Road. Replace limiting

equipment along the transmission lines.

Supporting

Statements:

The Ray Place Road – Warrenton 115 kV overloads under contingency.

In-Service

2030

Year:

Project Name: MEAG: BARNESVILLE PRIMARY 230/115 KV BANK B, REPLACEMENT

Description: Replace the Barnesville Primary 230/115 kV bank with higher rated auto transformer.

Supporting

The Barnesville Primary 230/115 kV autotransformer surpasses its rating under

Statements: contingency.

In-Service

2030

Year: Project Name:

MEAG: FORTSON - TALBOT CO #2 230 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the Fortson – Talbot County #2 230 kV transmission line with 200°C 1351 ACSS

conductor and replace associated jumpers.

Supporting

A multiple contingency event causes the Fortson – Talbot County #2 230 kV

Statements:

transmission line to overload.

In-Service

2030

Year:

Project Name:

MEAG: GOSHEN AREA STRATEGIC SOLUTION

Description:

GPC: Construct a 230 kV switching station on the Waynesboro - Wilson 230 kV

transmission line.

MEAG: Build a new 230 kV transmission line between the switching station and

Goshen, approximately 12.3 miles using 200°C 1351 ACSS conductor.

Supporting

The Augusta Corporate Park - Vogtle 230 kV transmission line overloads under

Statements:

contingency.

In-Service

2030

Year:

Project Name: NO

NORTH GEORGIA, NEW 115 KV TRANSMISSION LINE, CONSTRUCT

Description:

Construct approximately 7 miles of 115 kV line with minimum 170°C 1351 ACSS conductor on the North Jackson – Lawrence Smith 46 kV ROW that is to be retired.

Supporting

The future Banks Crossing – Pond Fork 115 kV line overloads under contingency.

Statements:

In-Service

Year:

2030

Project Name:

SWITCH WAY 230 KV, BREAKER REPLACEMENTS

Description:

The breaker duty margin for two 230 kV breakers at Switch Way will become negative

starting on 10/1/2029. Replace them with 230 kV higher rated breakers.

Supporting

This project is needed to increase breaker duty margins at Switch Way substation to

Statements: comply with NERC TPL-001-05, Section 2.3.

In-Service

2030

Year:

Project Name: TALLULAH LODGE – TOCCOA 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the entire, approximately 10.3 miles, Tallulah Lodge – Toccoa 115 kV

transmission line with 100°C 795 ACSR conductor. Replace limiting elements in

substations along the line.

Supporting

Statements:

The Tallulah Lodge – Toccoa 115 kV transmission line overloads under contingency.

In-Service

2030

Year:

Project Name: WARTHEN 500 KV SUBSTATION, RECONFIGURATION

Description:

Reconfigure the Warthen 500 kV substation.

Supporting

This project resolves multiple thermal overloads that are caused by contingency.

Statements:

In-Service

2031

Year:

Project Name:

ANNISTON – CROOKED CREEK 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 28 miles of 397 30/7 ACSR conductor to 795 26/7 ACSR

conductor from Golden Springs DS to Crooked Creek TS.

Supporting Provides additional operational and maintenance flexibility, which increases reliability.

Statements: In addition, the line is being reconductored due to the age and condition of the

structures and conductor.

In-Service

2031

Year:

Project Name: BARNESVILLE AREA 115 KV, NETWORK SOLUTION

Description: On the Lloyd Shoals – S. Griffin 115 kV transmission line, replace copper conductor

between Forsyth #2 and Stokes Store Rd (8.2 miles),make it normally closed, and add a breaker to network. Also replace copper conductor between Stokes Store Rd and Jackson (8.7 miles). On the Barnesville Primary – S. Griffin 115 kV transmission line: Replace jumpers and conductors from Barnesville Pri to N. Zebulon to Upper Pike to

Griffin #3 (18.2 miles).

Supporting

The project will address multiple thermal overloads that occur under multiple

Statements:

contingencies

In-Service

2031

Year:

Project Name: BAY CREEK – CONYERS 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Rockdale to Bay Creek segment, approximately 15.29 miles, of the Bay

Creek – Conyers 230 kV transmission line using 200°C 1351 ACSS Martin conductor.

Supporting

The Bay Creek - Conyers 230 kV transmission line will overload under certain

Statements:

contingencies.

In-Service

2031

Year: Project Name:

BOWEN #10 500/230 KV, AUTOBANK REPLACEMENT

Description: Replace the existing Bowen #10 500/230 kV autotransformer with a higher rated

500/230 kV autotransformer. Replace associated bus work and jumpers that are

limiting elements to the new autotransformer.

Supporting

Statements:

The Bowen #10 500/230 kV autotransformer overloads under contingency.

In-Service

2031

Year:

Project Name: ELLICOTT SUBSTATION, EXPANSION PROJECT

Description: — Add 6 new 230 kV terminals at Ellicott SS. Ellicott SS to become Ellicott TS.

Add new 115 kV station with breaker and a half configuration to support (13) 115 kV

line terminations, to include a new 230/115 kV autobank.

- Reconfigure the Barry SP substation and replace structures.

Supporting

Statements:

Upgrade existing and construct new transmission facilities to provide additional

operational and maintenance flexibility, which increases reliability.

In-Service

2031

Year:

Project Name: GTC: ACHORD ROAD – NORTH DUBLIN 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Achord Road – North Dublin 115 kV transmission line, approximately 9.84

miles, with 200°C 1351 ACSS conductor.

Supporting

The Achord Road to North Dublin 115 kV transmission line overloads under

Statements: co

contingency.

In-Service

2031

Year:

Project Name: GTC: AVERY - HOPEWELL 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor Hopewell to Birmingham transmission line section, approximately 3.3

miles, on Avery – Hopewell 115 kV transmission line with 100°C 1033 ACSR conductor.

Replace jumper at Birmingham with 1590 AAC jumper.

Supporting

Statements:

The Avery – Hopewell 115 kV transmission line overloads under contingency.

In-Service

2031

Year: Project Name:

GTC: BONAIRE PRIMARY – ECHECONNEE 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the Bonaire Primary - Echeconnee 115 kV transmission line, approximately 19

miles with 200°C 1351 ACSS conductor.

Supporting

The Bonaire Primary – Echeconnee 115 kV transmission line overloads under multiple

Statements: contingencies.

In-Service

2031

Year:

Project Name: GTC: DRESDEN 230 KV, JUMPER REPLACEMENT

Description:

Replace the jumpers at Dresden limiting the Dresden – Yates 230 kV line with higher

rated jumpers.

Supporting

Statements:

The jumpers overload under contingency.

In-Service

Year:

Project Name: GTC: MCDONOUGH – OLA 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 3.6 miles section from Mcgarity to Ola on the McDonough – Ola 115 kV

transmission line with 200°C 1351 ACSS Martin conductor. Upgrade limiting elements

at Ola.

2031

Supporting

Statements:

The McDonough – Ola 115 kV transmission line overloads under contingency.

In-Service

2031

Year:

Project Name: GTC: OLA – PORTERDALE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the Porterdale – Salem Road 115 kV transmission line segment, approximately

2.76 miles, using 200°C 1351 ACSS Martin conductor. Replace the limiting elements on

the transmission line.

Supporting

Statements:

The Ola – Porterdale 115 kV transmission line overloads under a contingency.

In-Service

2031

Year:

Project Name: HATCH – WADLEY 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 500 kV transmission line from Hatch – Wadley Primary with (3) 100°C

1113 ACSR conductor.

Supporting

The construction of the new Hatch – Wadley Primary 500 kV transmission line aims to

Statements: address the increasing penetration of renewable generation plants and load growth.

In-Service

2031

Year:

Project Name: HICKORY LEVEL – POST RD 115 KV TRANSMISSION LINE, REBUILD (PHASE 2)

Description: Rebuild 4.5 miles from Post Road to S Villa Rica junction with 200°C 1351 ACSS Martin

conductor.

Supporting

Statements:

The Hickory Level – Post Rd 115 kV transmission line overloads under contingency.

In-Service

2031

Year:

Project Name: HOPE HULL AREA SOLUTION

Description: Reconductor approximately 2.7 miles of 397 ACSR conductor from Hope Hull Tap to

Hyundai PT with 200°C 795 ACSS conductor.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2031

Year:

Project Name: MEAG: PIO NONO 230/115 KV AREA SOLUTION

Description: Build a 4-breaker 230 kV ring bus to terminate transmission lines from Dorsett, South

Griffin, and Pitts. Install an autotransformer and build a 115 kV yard to terminate a transmission line from Broadway. Make all necessary modifications to accommodate

all the 230 kV and 115 kV transmission line terminations.

Supporting This projects addresses 230 kV and 115 kV thermal overloads that occur under

Statements: contingency in the Central area and increases area capacity to move solar generation

from the South into Central and Metro South areas.

In-Service

2031

Year:

Project Name: PELL CITY AREA SOLUTION

Description: Construct a new Pell City SS and new approximately 12 mile 115 kV transmission line

from Pell City SS – Jackson Shoals TS utilizing 795 26/7 ACSR at 100°C. Convert East Pell

City DS and 25th Street DS to 115 kV.

Supporting Low voltage and thermal constraints in the area under contingency. This project

Statements: provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2031

Year:

Project Name: PITTMAN RD – WEST POINT (APC) 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild Pittman Road – West Point (APC) 115 kV transmission line with 200°C 1351

ACSS conductor. Replace the bus and associated jumpers at West Point #2 with higher

rated buswork and jumpers.

Supporting

The Pittman Road – West Point (APC) 115 kV transmission line overloads under

Statements: contingency.

In-Service

2031

Year:

Project Name: SAV: GOSHEN (SAV) – KRAFT 115 KV TRANSMISSION LINE TRANSMISSION LINE,

REBUILD

Description: Rebuild 3.04 miles of Goshen – Kraft 115 kV transmission line from Goshen to Rice

Hope from 100°C 795 ACSR Drake conductor to 200°C 1351 ACSS Martin conductor.

Supporting

The Goshen – Kraft 115 kV transmission line overloads under contingency.

Statements:

In-Service

2032

Year:

Project Name: ADAMSVILLE - EAST POINT 230 KV TRANSMISSION LINE, RESAG AND LIMITING

ELEMENTS REPLACEMENT

Description: Resag the Adamsville – East Point 230 kV transmission line to 100°C operation. Remove

limiting elements at East Point by replacing vendor rated adaptor and switches with

higher rated equipment.

Supporting

Statements:

The Adamsville – East Point 230 kV transmission line overloads under contingency.

In-Service

2032

Year: Project Name:

ALBERTA CITY – HOLT 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 4 miles of the Alberta City - Holt 115 kV transmission line

from 100°C 795 ACSR conductor to 200°C 795 ACSS conductor.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2032

Year:

Project Name: ATKINSON – NORTHSIDE DRIVE 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a portion of the Atkinson - Northside 115 kV transmission line, approximately

3.2 miles, from Atkinson to Chattahoochee with 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Atkinson – Northside 115 kV transmission line overloads under a contingency.

In-Service

2032

Year:

Project Name: FLOMATON, NEW 230/115 KV AUTOTRANSFORMER INSTALLATION

Description: Install a new Flomaton 230/115 kV autotransformer.

Supporting Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2032

Year:

Project Name: GTC: DYER ROAD – SOUTH COWETA 115 KV TRANSMISSION LINE, REBUILD (PHASE 2)

Description: Rebuild the 3.2 mile section of the Dyer Road – South Coweta 115 kV transmission line

from South Coweta to Mcintosh Trail with 200°C 1351 ACSS Martin conductor and

replace limiting elements at South Coweta and Mcintosh Trail.

Supporting

Statements:

The Dyer Road – South Coweta 115 kV transmission line overloads under contingency.

In-Service

2032

Year:

Project Name: JUDY MOUNTAIN – ROME 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild the 4.9 mile Judy Mountain – Rome 115 kV transmission line with 200°C 1351

ACSS Martin conductor. Replace limiting elements along the line.

Supporting

Statements:

The Judy Mountain – Rome 115 kV transmission line overloads under contingency

In-Service

2033

Year:

Project Name: BAY CREEK – CONYERS 230 KV, LIMITING ELEMENT REPLACEMENT

Description: Replace equipment such as jumpers, switches, and traps at the Bay Creek, Rockdale,

and Conyers substations with higher rating equipment.

Supporting Beginning in 2033, the Rockdale – Bay Creek section of the Bay Creek – Conyers 230 kV

Statements: transmission line will overload under certain contingencies.

In-Service

2033

Year:

Project Name: EAST POINT – MOUNTAIN VIEW 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild a portion of the East Point – Mountain View 115 kV transmission line,

approximately 2.4 miles of 100°C 397.5 ACSR conductor between East Point to College

Park # 3 Junction, with 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The East Point – Mountain View 115 kV transmission line overloads under contingency.

In-Service

2033

Year:

Project Name: GTC: CENTER PRIMARY – CLARKSBORO 230 KV TRANSMISSION LINE, REBUILD

Description: GTC to rebuild the Center Primary – Clarksbro Primary 230 kV transmission line,

approximately 8.3 miles, with 200°C 1351 ACSS conductor.

Supporting

The Center Primary – Clarksboro 230 kV transmission line overloads under

Statements: contingency.

In-Service

2033

Year:

Project Name: GTC: EAST SOCIAL CIRCLE - SNELLVILLE 230 KV, LIMINTING ELEMENT REPLACEMENT

Description: Replace limiting elements on the East Social Circle – Snellville 230 kV line with higher

rating equipment.

Supporting Equipment on the East Social Circle – Snellville 230 kV line overloads under

Statements: contingency.

2033

2033

In-Service

Year:

Project Name: GTC: EAST WALTON - MIDDLE FORK 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 500 kV transmission line from East Walton to Middle Fork,

> approximately 45 miles long with (3) 100°C 1113 ACSR conductor. Make all necessary accommodations for new 500 kV breakers at East Walton and Middle Fork substations.

Supporting This project addresses thermal overloads in Central and Northeast areas of GA, adds

Statements: additional capacity, and improves voltage profile.

In-Service

Year:

Project Name: GTC: SHOAL CREEK - SOUTH HALL 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 7.9 miles of the Shoal Creek – South Hall 230 kV transmission

line. Upgrade limiting elements on the line.

Supporting

Statements:

The Shoal Creek – South Hall 230 kV transmission line overloads under contingency.

In-Service

Year:

2033

Project Name:

MCEVER ROAD - SHOAL CREEK 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 2.9 miles of the McEver Road – Shoal Creek 115 kV transmission

line with 200°C 1351 ACSS conductor.

Supporting

Statements:

The McEver Road – Shoal Creek 115 kV transmission line overloads under contingency.

In-Service

2033

Year:

Project Name: MCGRAU FORD - MIDDLE FORK 500 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct a new 500 kV transmission line from McGrau Ford to Middle Fork with (3)

100°C 1113 ACSR conductor.

Supporting

Statements:

This is a strategic project to address multiple area compliance constraints, support the load growth in north Georgia, and to transport the expected generation additions in

Northeast Georgia.

2033

In-Service

Year:

Project Name:

PINE GROVE PRIMARY – WEST VALDOSTA 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild approximately 3.7 miles of the Pine Grove Primary – West Valdosta 115 kV

transmission line with 200°C 795 ACSS Drake conductor.

Supporting

Statements:

The Pine Grove – West Valdosta 115 kV transmission line overloads under contingency.

In-Service

Year:

2033

Project Name:

SAV: MELDRIM 230/115 KV, BANK D REPLACEMENT

Description:

Replace Meldrim 230/115 kV autotransformer

Supporting

The Meldrim 230/115 kV autotransformer overloads under contingency.

Statements:

In-Service

2033

Year:

Project Name:

WINDER PRIMARY 230 KV, BREAKER INSTALLATION

Description:

Install a 230 kV breaker at the Winder Primary substation.

Supporting

Statements:

The Bay Creek – LGE Monroe 230 kV transmission line overloads under contingency.

In-Service

2034

Year:

Project Name:

ALEX CITY AREA SOLUTION

Description:

Construct new West Alex City SS. Construct new West Dadeville TS networking Alex City, Crooked Creek – Martin Dam No. 2, and Thweatt. Reconductor approximately 4.52 miles from new West Alex City SS to City of Alex City #3 with 795 45/7 ACSR at

100°C.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

Project Name:

2034

Year:

ALICEVILLE – STANSEL 115 KV, NEW TRANSMISSION LINE, CONSTRUCT

Description: Construct a new approximately 17 mile 115 kV transmission line from Aliceville TS to

Stansel TS with 795 ACSR 26/7 ACSR at 100°C.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2034

Year:

Project Name: BELLAMY – EPES 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild ~21 miles of 4/0 ACSR conductor and 100°C 397 ACSR conductor from Bellamy

SS – Epes SS 115 kV transmission line to 200°C 795 ACSS.

Supporting The Bellamy – Epes 115 kV transmission line overloads under contingency. Also

Statements: provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2034

Year:

Project Name: BESSEMER – EAST PELHAM 230 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade approximately 14.9 miles of 1033 45/7 ACSR from 75°C to 100°C from

Bessemer TS to East Pelham TS.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

Project Name:

2034

Year:

BULL SLUICE – POWERS FERRY 230 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 1.65 miles of Bull Sluice – Powers Ferry 230 kV transmission line

with 200°C 1351 ACSS Martin conductor. Replace jumpers and OHGW.

Supporting

Statements:

The Bull Sluice – Powers Ferry 230 kV transmission line overloads under contingency.

In-Service

2034

Year:

Project Name: **DEMOPOLIS TS – CEMEX 115 KV, NEW TRANSMISSION LINE, CONSTRUCT**

Description: Construct ~1 mile of 115 kV transmission line from Demopolis to Cemex Tap using 795

ACSR 100°C.

Supporting

Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2034

Year:

Project Name: GORGAS – MILLER 230 KV TRANSMISSION LINE, UPGRADE

Description: Upgrade approximately 16 miles of 1351 54/19 ACSR at 100° to 125°C from Gorgas SP

to Miller SP.

Supporting

The Miller – Gorgas 230 kV transmission line overloads under contingency.

Statements:

In-Service

2034

Year:

Project Name: GTC: CUMMING – DAWSON CROSSING 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild approximately 12.7 miles of the Cumming – Dawson Crossing 115 kV

transmission line with 200°C 1351 ACSS Martin conductor.

Supporting The Cumming – Dawson Crossing 115 kV transmission line overloads under

Statements: contingency.

In-Service

2034

Year:

Project Name: HOLLY SPRINGS PRIMARY – NELSON 115 KV TRANSMISSION LINE, REBUILD

Description: Rebuild 8.1 miles of the Holly Springs – Nelson 115 kV transmission line with 200°C

1351.0 ACSS Martin conductor.

Supporting The Holly Springs Primary – Nelson 115 kV transmission line overloads under

Statements: contingency

In-Service

2034

Year:

Project Name: MOBILE AREA NETWORKING – 3RD PATH, CONSTRUCT

Description: Construct new Dawes SS at Dawes Tap on the Big Creek – N. Theodore 115 kV

transmission line.

Supporting

Provides additional operational and maintenance flexibility, which increases reliability.

Statements:

In-Service

Year:

2034

Project Name:

MOUNDVILLE, NEW TRANSMISSION LINE, CONSTRUCT

Description:

Construct a new 6-mile, 115 kV transmission line, 795, 26/7 ACSS at 200°C from Moundville TS to a new 3-way switch near structure 7 between Colonial Pipe (Moundville) and Westervelt Co, new terminal at Moundville TS, install 1-way switch

near Structure 41.

Supporting Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2034

Year:

Project Name: NORTH THEODORE AREA SOLUTION

Description:

- Reconductor ~0.9 miles of the Hollinger's Island Holcim 115 kV transmission line to 795 ACSR at 100°C.
- Construct New SS near Multistate Environmental Response Trust (Formerly Known as Tronox LLC) and Switch 19985.
- Construct ~5.3 miles of 795 ACSR at 100°C 115 kV transmission line from N.
 Theodore Praxair Tap.
- Install new 115 kV terminal at N. Theodore TS.

Supporting Statements:

Provides additional operational and maintenance flexibility, which increases reliability.

In-Service

2035

Year:

DECATUR – SCOTTDALE 115 KV TRANSMISSION LINE, JUMPER REPLACEMENT

Description:

Project Name:

Replace the limiting jumper along the Decatur – Scottdale 115 kV transmission line

with 1590.0 AAC Coreopsis jumper.

Supporting

Statements:

The Decatur – Scottdale 115 kV transmission line overloads under a contingency.

In-Service

2035

Year: Project Name:

EAST POINT - MORROW 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild a 3 mile section from East Point to College Point Tap and Morrow to Forrest Park with 200°C 1351 ACSS Martin conductor on the East Point – Morrow 115 kV transmission line. Rebuild portions of shared structures with the East Point - Mountain View and Mountain View - Morrow transmission lines. Also replace limiting elements

on the transmission line.

Supporting Statements: The East Point – Morrow 115 kV transmission line overloads under contingency.

In-Service

2035

Year:

EAST POINT – UNION CITY (WHITE) 230 KV TRANSMISSION LINE, REBUILD Project Name:

Description: Rebuild a section of the East Point – Union City 230 kV transmission line with 200°C

1351 ACSS conductor. Replace limiting elements along the transmission line.

Supporting

Statements:

The East Point – Union City 230 kV transmission line overloads under contingency.

In-Service

2035

Year:

Project Name: GADSDEN – GULF STATES STEEL 115 KV TRANSMISSION LINE, RECONDUCTOR

(PHASE 2)

Description: Replace Gulf States Steel DS with a new 5-terminal, 4-breaker 115 kV ring bus (West

Gadsden SS) across the street from the existing substation. Modify Linde Gadsden CU

due to retirement of Gulf States Steel DS.

Supporting

Provides additional operational and maintenance flexibility which then increases Statements:

reliability. In addition, associated with replacing aging equipment at Gulf States Steel

DS.

In-Service

2035

Year: Project Name:

GTC: AVERY - HOLLY SPRINGS 115 KV TRANSMISSION LINE, REBUILD

Description:

Rebuild the 2.43 miles from Holly Springs to Newlight Church section of the Avery –

Holly Springs 115 kV transmission line with 200°C 1351 ACSS Martin conductor.

Supporting

Statements:

The Avery – Holly Springs 115 kV transmission line overloads under contingency.

In-Service

2035

Year:

Project Name: MADISON PARK – MOUNT MEIGS DS 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor approximately 0.5 miles of 115 kV transmission line from Auburn

University (Montgomery) to McLemore DS from 100°C 795 26/7 ACSR conductor to

100°C 1351 54/19 ACSR conductor.

Supporting

This project provides additional operational and maintenance flexibility, which

Statements: increases reliability.

In-Service

2035

Year:

Project Name: SAV: MELDRIM, NEW 230/115 KV, AUTOTRANSFORMER INSTALLATION

Description: Install a second 230/115 kV autotransformer at Meldrim with associated station

equipment.

Supporting

Statements:

The Meldrim 230/115 kV autotransformer overloads under contingency.

In-Service

Year:

2035

Project Name: UNION SPRINGS – PINCKARD 115 KV TRANSMISSION LINE, RECONDUCTOR

Description: Rebuild approximately 10.6 miles of Pinckard – Ewell SS 115 kV transmission line from

49°C 397 ACSR conductor to 200°C 795 ACSS conductor. Reconductor approximately 50 miles of Union Springs – Ewell 115 kV transmission line from 49°C 397 ACSR conductor

to 200°C 795 ACSS conductor.

Supporting Statements:

The Union Springs – Pinckard 115 kV transmission line overloads under contingency.

In- Service

2026

Year:

Project Name:

CUMBERLAND COMBINED CYCLE, GENERATION INTERCONNECTION CC1 AND CC2

Description: Construct new 500 kV station to interconnect new natural gas fired CC generation.

Loop in two nearby 500 kV transmission lines.

Supporting Scope is driven by the interconnection of new generation. This is Q483 in TVA's

Statements: Interconnection Queue which is publicly available on TVA's OASIS.

In- Service

2026

Year:

Project Name: NEW CALEDONIA GAS, GENERATION INTERCONNECTION

Description: Rebuild 11.54 miles and reconductor 0.23 miles of the Clay – Prairie 161 kV

transmission line. Rebuild 4.61 miles of the Prairie – Egypt MS 161 kV transmission line. Reconductor 9.36 miles of the Egypt – Okolona 161 kV transmission line and perform

bus and jumper replacement at Okolona.

Supporting New Caledonia CT is adding 520 MW summer (610 MW winter) at the Lowndes 161 kV

Statements: bus. Plant causes thermal overload on Clay – Okolona 161 kV transmission line.

In- Service 2027

Year:

Project Name: BROWNSVILLE 161 KV AREA CAPACITOR BANK

Description: BEA requests additional capacity for committed and perspective loads within their

service territory. When the feed from Covington is lost, low voltages are seen at

Brownsville 161 kV substation which limits their capacity to 20 MW.

Supporting Voltage support and additional capacity is needed for economic development in the

Statements: area.

In- Service

2027

Year:

Project Name: BULL RUN 500 KV SYNCHRONOUS CONDENSER, INSTALL

Description: Install breaker, switches, relaying, and metering to support synchronous condensing

units at Bull Run 500 kV substation.

Supporting Voltage support and additional capacity is needed for economic development in the

Statements: area.

In- Service

2027

Year:

Project Name: CORDOVA – YUM YUM 161 KV TRANSMISSION LINE, RECONDUCTOR

Description: Reconductor ~23.5 miles of the Cordova – Yum Yum 161 kV transmission line section

with TS - 1098.6 kcmil Ruddy, sag temp 180°C.

Supporting Additional thermal capacity is needed for economic development in the Memphis, TN

Statements: area.

In- Service

2027

Year:

Project Name: HILLSBORO SOLAR, GENERATION INTERCONNECTION

Description: Construct new 161kV station to interconnect new solar generation. Loop in an existing

161kV TL to the new station. Reconductor several existing TLs.

Supporting Scope is driven by the interconnection of new generation. This is Q385 in TVA's

Statements: Interconnection Queue which is publicly available on TVA's OASIS.

In- Service

Year:

2027

Project Name:

KINGSTON CC AND AERODERIVATIVE CT, GENERATION INTERCONNECTION

Description:

Construct new 161 kV substation to interconnect new natural gas fired CC and aeroderivative generation. Loop in area 161 kV transmission lines. Upgrade fifteen

existing 161 kV transmission lines to increase the thermal rating of each.

Supporting

Scope is driven by the interconnection of new generation. This is Q489 in TVA's

Statements:

Interconnection Queue which is publicly available on TVA's OASIS.

In- Service

2027

Year:

Project Name: LOVING KY 161 KV SUBSTATION, CONSTRUCT

Description: Construct the Loving, KY 161 kV substation. Reconductor ~26.71 miles of 161 kV

transmission line from Bowling Green to Lost City with 1351 ACSS at 140°C. Reconductor ~8.64 miles of 161 kV transmission line from Bowling Green to East

Bowling Green with 1351 ACSS at 135°C.

Supporting

Additional voltage support and thermal capacity is needed in the Bowling Green area

Statements: for economic development.

In- Service

2027

Year:

Project Name: NORMANDY LAKE TULLAHOMA SOLAR, GENERATION INTERCONNECTION

Description: Construct new 161 kV substation to interconnect new solar generation. Loop in an

existing 161 kV transmission line to the new station.

Supporting

Scope is driven by the interconnection of new generation. This is Q445 in TVA's

Statements: Interconnection Queue which is publicly available on TVA's OASIS.

In- Service

2027

Year:

Project Name:

NORTH OAKLAND – COFFEEVILLE 161 KV TRANSMISSION LINE, CONSTRUCT

Description: Construct ~18.0 miles of new 161 kV transmission line from North Oakland to

Coffeeville using 954 ACSR at 100°C and upgrade terminal equipment at Batesville 161

kV substation.

Supporting

Statements:

Multiple 161 kV transmission lines overload under contingency.

In- Service

2027

Year:

Project Name: ST. ELMO KY 161 KV SUBSTATION, CONSTRUCT

Description: Construct the St. Elmo KY 161 kV substation and loop in the Casky – Edgoten 161 kV

and the Paradise - Clarksville 161 kV transmission lines.

Supporting Voltage support and additional capacity is needed for economic development in the

Statements: area.

In- Service

2027

Year:

Project Name: TRIFECTA SOLAR, RECONDUCTOR

Description: Reconductor Sturgis – Bluefield MS 161 kV transmission line (10.6 miles). Replace

jumper and switch at Sturgis.

Supporting

Trifect Solar adds 68.4 MW of solar to the area causing overloads on the Sturgis –

Statements: Bluefield 161 kV transmission line.

In- Service

2027

Year:

Project Name: TRINITY 161 KV CAPACITOR BANK, REPLACEMENT

Description: Replace failed Trinity capacitor bank.

Supporting

Trinity 161 kV capacitor bank has failed and needs to be replaced.

Statements:

In- Service

2028

Year:

Project Name: CLINTON – MARTIN 161 KV, RECONDUCTOR

Description: Reconductor the Clinton – Martin 161 kV transmission line.

Supporting Clinton – Martin was originally constructed in 1952. The original conductor is near end

Statements: of life. Planning has identified a potential future overload.

In- Service Year:

2028

Project Name:

DAVIDSON 500 KV SWITCH HOUSE, CONSTRUCT

Description: Construct a new 500 kV switch house with all new assets and replace aging assets in

the Davidson Yard.

Supporting

Additional thermal capacity and voltage support is needed in the Davidson County, TN

Statements: area under contingency.

In- Service

2028

Year:

Project Name: DYERSBURG – HIGHWAY 412 161 KV, RECONDUCTOR

Description: Reconductor the Dyersburg –Highway 412 161 kV transmission line.

Supporting The conductor on L5930 was installed in 1947 and is reaching end of useful life. TPS

Statements: Planning has also identified potential future overloads.

In- Service

2028

Year:

Project Name: HORUS SOLAR, GENERATION INTERCONNECTION

Description: Connect new generation via a new line tap on the Franklin – Portland 161 kV

transmission line.

Supporting Scope is driven by the interconnection of new generation. This is Q388 in TVA's

Statements: Interconnection Queue which is publicly available on TVA's OASIS.

In- Service

2028

Year:

Project Name: MIDWAY – S MACON - DEKALB 161 KV TRANSMISSION LINE, CONSTRUCT

Description: Construct ~20 miles of new 161 kV transmission line from Midway to S Macon and

~31.3 miles of new 161 kV transmission line from S Macon to Dekalb via Scooba.

Supporting

Statements:

Voltage support is needed in TVA's Mississippi area under contingency.

In- Service

2028

Year: Project Name:

PHILADELPHIA 161 KV REACTORS, INSTALL

Description:

Install three reactors at the Philadelphia 161 kV Substation.

Supporting

Voltage support is needed in TVA's Mississippi area under contingency.

Statements:

In- Service

2028

Year:

Project Name: SPRING VALLEY SOLAR, GENERATION INTERCONNECTION

Description: Construct new 161 kV substation to interconnect new solar generation. Loop in an

existing 161 kV transmission line to the new substation. Reconductor an existing 161

kV transmission line.

Supporting

Scope is driven by the interconnection of new generation. This is Q387 in TVA's

Statements:

Interconnection Queue which is publicly available on TVA's OASIS.

In- Service

2029

Year:

Project Name: APALACHIA AREA IMPROVEMENT PLAN

Description: Construct Martin's Creek 161 kV substation. Construct ~25 miles of new transmission

line from Apalachia 161 kV substation to Ranger 161 kV switching station.

Supporting

Statements:

The Apalachia - Basin 161 kV transmission line overloads under contingency.

In- Service

2029

Year:

Project Name: BRADLEY 500 KV SWITCH HOUSE, CONSTRUCT

Description: Construct a new 500 kV switch house at Bradley.

Supporting Additional thermal capacity and voltage support is needed in the Bradley County, TN

Statements: area under contingency.

In- Service

2029

Year:

Project Name: GUNTERSVILLE – KETONA TRANSMISSION LINE, REBUILD

Description: Rebuild portions of the TVA Guntersville Hydro – APC Ketona 115 KV transmission line

with single circuit 954k ACSR at 100°C.

Supporting Statements:

Additional thermal capacity is needed in area under contingency.

In- Service

2029

Year:

Project Name: LIMESTONE – SEWELL 161 KV #2 TRANSMISSION LINE, CONSTRUCT

Description: Construct ~2.1 miles of 161 kV transmission line with 2034 ACSR at 100°C on the

existing Limestone – Sewell 161 kV double circuit towers and add breakers to the 161

kV switchyard to make a double breakered 161 kV station.

Supporting

Additional thermal capacity and voltage support is needed in the Huntsville, AL area

Statements: under contingency.

In- Service

2029

Year:

Project Name: RADNOR 161 KV STATCOM, INSTALL

Description: With the Nashville Area continuing to rapidly grow, along with spinning generation

being replace by inverter bases resources. Planning sees stability concerns in the

Nashville area. STATCOMs will help mitigate the issues seen in the area.

Supporting

Statements:

Dynamic voltage support is needed in the Nashville area.

In- Service

2029

Year:

Project Name: **RESERVATION – WHEELER 161 KV, RECONDUCTOR**

Description: Reservation – Wheeler 161 kV transmission line was originally constructed in 1940. The

original conductor is beyond useful life and should be replaced.

Supporting Reservation - Wheeler 161 kV transmission line was originally constructed in 1940. The

Statements: original conductor is beyond useful life and should be replaced.

In- Service

2030

Year:

Project Name: DICKSON 161 KV AREA IMPROVEMENT

Description: Construct new Locust Creek 161 kV substation. Construct ~9.5 miles of new 161 kV

transmission line from Bon Aqua to Burns. Rebuild ~8 miles of 161 kV transmission line

between Dickson and Ponoma tap. Build a new switch house at Dickson.

Supporting

Statements:

Voltage support is needed in the Dickson, TN area under contingency.

In- Service

2030

Year:

Project Name: E. CLEVELAND – CHARLESTON 161 KV, JUMPER REPLACEMENT

Description: Upgrade terminal equpment at both E. Cleveland & Charleston 161 kV substations.

Supporting

Statements:

E. Cleveland – Charleston 161 kV transmission line overloads under contingency.

In- Service

2030

Year:

Project Name: HAMPTON 500 KV STATION, CONSTRUCT

Description: Construct new 500/161 kV Hampton station. Loop in existing Montgomery – Wilson

500 kV transmission line (~0.1 mile from station to loop point). Loop in existing double

circuit 161 kV from Montgomery to Hemlock.

Supporting

Additional thermal capacity and voltage support is needed in the Montgomery County,

Statements: TN and Todd County, KY area under contingency.

In- Service

2030

Year:

Project Name: WHEELER 161 KV SWITCHYARD, RELOCATION

Description: Build a new 161 kV switchyard, Doublehead, to replace Wheeler HP 161 kV switchyard.

Supporting

Statements:

A geological survey was conducted to investigate subsurface conditions within the Wheeler 161 kV switchyard. Flaws within the subgrade in the switchyard were

discovered. The soil/rockfill above the bedrock (~ 10-20 ft thickness) is very soft

throughout throughout the switchyard.

SERTP TRANSMISSION PROJECTS **TVA Balancing Authority Area**

In- Service

2030

Year:

Project Name: WILSON 161 KV STATCOM, INSTALL

Description: With the Nashville Area continuing to rapidly grow, along with spinning generation

being replace by inverter bases resources, Planning sees stability concerns in the

Nashville area. STATCOMs will help mitigate the issues seen in the area.

Supporting

Statements:

Dynamic voltage support is needed in the Nashville area.

In- Service

2031

Year:

Project Name: SEQUOYAH 500 KV SWITCH HOUSE, CONSTRUCT

Description: Construct a new 500 kV switch house with new assets including breakers at the

Sequoyah 500 kV substation.

Supporting New revision of the TPL standard expands the single point of failure which results in

Statements: violations at Sequoyah.

VI. Appendix 1: AECI BAA

The following information provides a more granular overview of the AECI BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A1.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (AECI BAA)

AECI BAA	100-120 kV	121-150 kV	151-199 kV	200-299 kV	300-399 kV	400-550 kV
Transmission lines – New (Circuit Mi.)						
Transmission Lines – Uprates ¹ (Circuit Mi.)			64.87			
Transformers ² – New						
Transformers ² – Replacements						

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

 $Table\ A1.2: Interface\ commitments ^{1}\ modeled\ in\ the\ SERTP\ Summer\ Peak\ models\ -\ AECI\ BAA$

То	2027	2030	2035
SPP	-623	-623	-623
MISO	-590	-590	-590
Total	-1213	-1213	-1213

A positive number represents a net export from the AECI BAA.

² The voltages shown represent the operating voltages on the high side terminals of the transformer.

A detailed listing of the changes in generation assumptions within the AECI BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A1.3 below. Table A1.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A1.5 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow model.

Table A1.3: Changes in Generation Assumptions Based Upon LSEs - AECI BAA

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Ripley 161 kV	Natural Gas		460	460	460	460	460	460	460	460	460
Rockies Express 161 kV	Natural Gas		460	460	460	460	460	460	460	460	460

Table A1.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – AECI BAA

SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
				None						

Table A1.5: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model - AECI BAA

Summer Peak 2027 & 2	035 Regional SERTP	V3 Models		20)27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Bluegrass Ridge	300008	1GNTRYG1	1	Wind	56.7	Wind	56.7
Chouteau	300020	1CHOTCT4	1	Natural Gas	172.3	Natural Gas	172.3
Chouteau	300021	1CHOTCT5	1	Natural Gas	172.5	Natural Gas	172.5
Chouteau	300024	1CHOTST6	1	Natural Gas	189.7	Natural Gas	189.7
Chouteau	300031	1CHOTST3	1	Natural Gas	155	Natural Gas	155
Chouteau	300032	1CHOTCT1	1	Natural Gas	153.3	Natural Gas	153.3
Chouteau	300033	1CHOTCT2	1	Natural Gas	161.2	Natural Gas	161.2
Clear Creek	301493	1CLEARCKG1	1	Wind	121	Wind	121
Clear Creek	301512	1CLEARCKG2	2	Wind	99	Wind	99
Clear Creek	301619	1CLEARCKG3	3	Wind	22	Wind	22
Conception	300273	1CLYDEG1	1	Wind	50.4	Wind	50.4

Summer Peak 2027 & 2	035 Regional SERTP	V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Cow Branch	300009	1ACHSNG1	1	Wind	50.4	Wind	50.4
Essex	300029	1ESSEXG	1	Natural Gas	98.1	Natural Gas	98.1
Holden	300012	1HOLDNG11	1	Natural Gas	110.2	Natural Gas	110.2
Holden	300013	1HOLDNG12	1	Natural Gas	110.2	Natural Gas	110.2
Holden	300014	1HOLDNG13	1	Natural Gas	110.2	Natural Gas	110.2
Lost Creek	301358	1WINSLOWG1	1	Wind	168	Wind	168
Mt Pleasant	301449	2MTPLCTY	1	Diesel	24	Diesel	24
New Madrid	300006	1NM G1	1	Coal	624.3	Coal	624.3
New Madrid	300007	1NM G2	1	Coal	607.6	Coal	607.6
Nodaway	300025	1NDWYG1	1	Natural Gas	93.1	Natural Gas	93.1
Nodaway	300026	1NDWYG2	1	Natural Gas	93.1	Natural Gas	93.1
Osage	301382	10SAGEWINDG1	1	Wind	150	Wind	150
Ripley	301604	1RPLY	1	Natural Gas	460	Natural Gas	460
St. Francis	300010	1STFRG1	1	Natural Gas	245	Natural Gas	245
St. Francis	300011	1STFRG2	1	Natural Gas	225.9	Natural Gas	225.9
Thomas Hill	300001	1THLG1	1	Coal	177	Coal	177
Thomas Hill	300002	1THLG2	1	Coal	285	Coal	285
Thomas Hill	300003	1THLG3	1	Coal	747	Coal	747
Turney	301606	1TRNY	1	Natural Gas	460	Natural Gas	460
Unionville	300022	1UNION1	1	Oil	22	Oil	22
Unionville	300023	1UNION2	1	Oil	22	Oil	22
West Plains City	300027	1WPLCTG1	1	Natural Gas	22	Natural Gas	22
West Plains City	300028	1WPLCTG2	1	Natural Gas	22	Natural Gas	22
White Cloud	301490	1WHITCLDG1	1	Wind	214.5	Wind	214.5
White Cloud	301585	1WHITCLDG2	2	Wind	22	Wind	22

VII. Appendix 2: Duke Energy Carolinas BAA

The following information provides a more granular overview of the Duke Energy Carolinas BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A2.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Duke Energy Carolinas BAA)

Duke Energy Carolinas BAA	100-120	121-150	151-199	200-299	300-399	400-550
Duke Ellergy Carollilas BAA	kV	kV	kV	kV	kV	kV
Transmission lines – New (Circuit Mi.)						
Transmission Lines – Uprates ¹ (Circuit Mi.)	277			36.4		
Transformers ² – New	1					
Transformers ² – Replacements	10					

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A2.2: Interface commitments¹ modeled in the SERTP Summer Peak models – Duke Energy Carolinas BAA

То	2027	2030	2035
Duke Progress East	1891	1695	1395
SCE&G	232	232	232
SC	187	177	163
Southern	0	0	0
PJM	100	100	100
SEPA	-309	-309	-309
YAD	-215	-215	-215
Total	1886	1680	1366

¹ A positive number represents a net export from the Duke Energy Carolinas BAA.

² The voltages shown represent the operating voltages on the high side terminals of the transformer.

A detailed listing of the changes in generation assumptions within the Duke Energy Carolinas BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A2.3 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2025 series set of SERTP power flow models is provided below, while Table A2.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A2.5 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow model.

Table A2.3: Changes in Generation Assumptions Based Upon LSEs – Duke Energy Carolinas BAA

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Allen 1 BESS	Storage	50	50	50	50	50	50	50	50	50	50
Allen 2 BESS (GRR) ²	Storage			167	167	167	167	167	167	167	167
Baxter Creek	Solar	30	30	30	30	30	30	30	30	30	30
Bear Branch	Solar	34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5	34.5
Bear Claw	Solar			28.25	28.25	28.25	28.25	28.25	28.25	28.25	28.25
Beaverdam	Solar	42	42	42	42	42	42	42	42	42	42
Brookcliff	Solar		50	50	50	50	50	50	50	50	50
Bush River	Solar						45	45	45	45	45
Cliffside 5	Coal	574	574	574	574	574	0				
Cliffside 5 Proxy ¹	Proxy Generation						574	574	574	574	574
Five Circles	Solar						74.9	74.9	74.9	74.9	74.9
Granite BESS	Storage					197	197	197	197	197	197
Healing Springs	Solar		55	55	55	55	55	55	55	55	55
Hornet	Solar	73	73	73	73	73	73	73	73	73	73
Hudson Place	Solar						70.7	70.7	70.7	70.7	70.7
Joanna White	Solar		37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5
Lincoln 17	Natural Gas	402	402	402	402	402	402	402	402	402	402
Marshall 1	Coal	388	388	388	0						
Marshall 1 Replacement	Natural Gas				388	388	388	388	388	388	388
Marshall 2	Coal	392	392	392	0						

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Marshall 2 Replacement	Natural Gas				392	392	392	392	392	392	392
Marshall 3	Coal	705	705	705	705	705	705	0			
Marshall 3 Proxy ¹	Proxy Generation							705	705	705	705
Marshall 4	Coal	711	711	711	711	711	711	0			
Marshall 4 Proxy ¹	Proxy Generation							711	711	711	711
Newberry	Solar	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5
Quaker Creek	Solar		35	35	35	35	35	35	35	35	35
Riverbend BESS	Storage			115	115	115	115	115	115	115	115
Rutabaga	Solar			69.75	69.75	69.75	69.75	69.75	69.75	69.75	69.75
South Davidson	Solar		80	80	80	80	80	80	80	80	80
Sweetwater	Solar		34	34	34	34	34	34	34	34	34
Tyger	Solar + Storage		74.99	74.99	74.99	74.99	74.99	74.99	74.99	74.99	74.99

¹ Generators left in model in expectation of replacement generation through the Generation Replacement Request process.

Table A2.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – Duke Energy Carolinas BAA

SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Broad River	925	925	925	925	925	925	925	925	925	925
Catawba	407	407	407	407	407	407	407	407	407	407
Cherokee	98	98	98	98	98	98	98	98	98	98
Cleveland	196	196	196	196	196	196	196	196	196	196
Kings Mountain	92	92	92	92	92	92	92	92	92	92
Rowan	523	526	520	330	180	180	180	180	180	180

Table A2.5: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model - Duke Energy Carolinas BAA

Summer Peak 2027 & 2	2035 Regional SERT	TP V3 Models		2	027	2035		
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)	
Allen	309755	ALLEN BAT2 100.00	ВТ	N/A	N/A	Battery	167	
Allen	309907	ALLEN BAT 100.00	ВТ	Battery	50	Battery	50	

² Replacement for retired Allen unit 1 Coal Fired Unit.

Summer Peak 2027 & 2	2035 Regional SERT	P V3 Models		20	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Apex	309803	1APEXPV 44.000	PV	Solar	28.9	Solar	28.9
Apple 2	308391	APPLEPV2 100.00	PV	Solar	20	Solar	20
Apple 3	308387	APPLEPV3 100.00	PV	Solar	16.2	Solar	16.2
Ayrshire	308375	1AYRSHIRE 44.000	PV	Solar	16.8	Solar	16.8
Bad Creek	306207	1BADCRK12 19.000	1	Pumped Hydro	420	Pumped Hydro	420
Bad Creek	306207	1BADCRK12 19.000	2	Pumped Hydro	420	Pumped Hydro	420
Bad Creek	306208	1BADCRK34 19.000	3	Pumped Hydro	420	Pumped Hydro	420
Bad Creek	306208	1BADCRK34 19.000	4	Pumped Hydro	420	Pumped Hydro	420
Baxter Creek	309902	1BAXCKPV 44.000	PV	Solar	30	Solar	30
Bear Branch	309860	1BEARBRNCHPV44.000	PV	Solar	34.5	Solar	34.5
Bear Claw PV	309805	1BEARCLPV 44.000	PV	N/A	N/A	Solar	28.25
Bear Creek	308517	1BEARCRK 4.1600	1	Hydro	9	Hydro	9
Beaverdam	308659	1BEAVERDAMPV44.000	PV	Solar	40.8	Solar	40.8
Belews Creek	308377	1BELEWS1 18.000	1	Coal/Gas	619	Coal/Gas	619
Belews Creek	308377	1BELEWS1 18.000	L	Coal/Gas	513	Coal/Gas	619
Belews Creek	308378	1BELEWS2 18.000	2	Coal/Gas	624	Coal/Gas	624
Belews Creek	308378	1BELEWS2 18.000	L	Coal/Gas	503	Coal/Gas	624
Bridgewater	308079	1BRIDGEW 6.6000	1	Hydro	15.5	Hydro	15.5
Bridgewater	308920	1BRIDGEW2 6.6000	2	Hydro	15.5	Hydro	15.5
Broad River	309814	BROADRVRPV 100.00	PV	Solar	50	Solar	50
Broad River Energy	306222	1BRECG4 18.000	4	Natural Gas	177	Natural Gas	177
Broad River Energy	306224	1BRECG5 18.000	5	Natural Gas	177	Natural Gas	177
Broad River Energy	306314	1BRECG1 18.000	1	Natural Gas	177	Natural Gas	177
Broad River Energy	306315	1BRECG2 18.000	2	Natural Gas	177	Natural Gas	177
Broad River Energy	306316	1BRECG3 18.000	3	Natural Gas	177	Natural Gas	177
Brookcliff	309621	BROOKCLIFFPV100.00	PV	Solar	50	Solar	50

Summer Peak 2027 & 20	35 Regional SERT	P V3 Models		20	027	20)35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Buck	308090	1BUCKG11 18.000	11	Natural Gas	176.5	Natural Gas	176.5
Buck	308091	1BUCKG12 18.000	12	Natural Gas	176.5	Natural Gas	176.5
Buck	308092	1BUCKS10 18.000	10	Natural Gas	333	Natural Gas	333
Bush River PV	309727	BUSHRVRPV 100.00	PV	N/A	N/A	Solar	45
Buzzard Roost	307037	1BUZZHYD 4.1600	1	Hydro	4.3	Hydro	4.3
Buzzard Roost	307037	1BUZZHYD 4.1600	2	Hydro	4.3	Hydro	4.3
Buzzard Roost	307037	1BUZZHYD 4.1600	3	Hydro	4.3	Hydro	4.3
Catawba	307856	1CATAWBA1 22.000	1	Nuclear	1188	Nuclear	1188
Catawba	307857	1CATAWBA2 22.000	2	Nuclear	1169	Nuclear	1169
Cedar Cliff	308516	1CEDARCL 6.6000	1	Hydro	6.4	Hydro	6.4
Cedar Creek	307858	1CEDAR CK 6.6000	1	Hydro	13	Hydro	13
Cedar Creek	307858	1CEDAR CK 6.6000	2	Hydro	15	Hydro	13
Cedar Creek	307858	1CEDAR CK 6.6000	3	Hydro	15	Hydro	13
Cherokee	306325	1CHEROKEG 13.800	1	Natural Gas	52	Natural Gas	52
Cherokee	306326	1CHEROKES 13.800	1	Natural Gas	32	Natural Gas	32
Clemson	308878	CLEMSONU 100.00	1	Natural Gas	17.8	Natural Gas	17.8
Cleveland County	308607	1CLEVELAND1 16.500	1	Natural Gas	178	Natural Gas	178
Cleveland County	308608	1CLEVELAND2 16.500	2	Natural Gas	178	Natural Gas	178
Cleveland County	308609	1CLEVELAND3 16.500	3	Natural Gas	178	Natural Gas	178
Cleveland County	308610	1CLEVELAND4 16.500	4	Natural Gas	178	Natural Gas	178
Cliffside	307610	1CLIFSID5 24.000	5	Coal	574	Coal/Gas	574
Cliffside	308789	1CLFSDGEN 24.500	6	Coal/Gas	880	Coal/Gas	880
Cowans Ford	308227	1COWANS1 13.800	1	Hydro	81	Hydro	81
Cowans Ford	308237	1COWANS2 13.800	2	Hydro	81	Hydro	81
Cowans Ford	308238	1COWANS3 13.800	3	Hydro	81	Hydro	81
Cowans Ford	308239	1COWANS4 13.800	4	Hydro	81	Hydro	81
Dan River	308603	1DNRVRG8 18.000	8	Natural Gas	176.5	Natural Gas	176.5
Dan River	308604	1DNRVRG9 18.000	9	Natural Gas	176.5	Natural Gas	176.5
Dan River	308605	1DNRVRS7 18.000	7	Natural Gas	333	Natural Gas	333
Dearborn	307859	1DEARBN1 6.6000	1	Hydro	14	Hydro	14

Plant Dearborn Dearborn Fishing Creek Fishing Creek	307860 307860 307861 307861 308912	Bus Name 1DEARBN23 6.6000 1DEARBN23 6.6000 1FISHNG C 6.6000 1FISHNG C 6.6000 1FISHNG C 6.6000	1d 2 3 1	Hydro Hydro	Pmax (MW) 14 14	Fuel Type Hydro Hydro	Pmax (MW)
Dearborn Fishing Creek	307860 307861 307861 308912	1DEARBN23 6.6000 1FISHNG C 6.6000 1FISHNG C 6.6000	3	Hydro		,	
Fishing Creek	307861 307861 308912	1FISHNG C 6.6000 1FISHNG C 6.6000	1	•	14	Hvdro	4.4
	307861 308912	1FISHNG C 6.6000		Lludae		,	14
Fishing Creek	308912		2	Hydro	11	Hydro	11
		1EICHNG C2 6 6000	2	Hydro	9.5	Hydro	11
Fishing Creek	200042	171371NG CZ 0.0000	3	Hydro	9.5	Hydro	9.5
Fishing Creek	308912	1FISHNG C2 6.6000	4	Hydro	11	Hydro	9.5
Fishing Creek	308912	1FISHNG C2 6.6000	5	Hydro	8	Hydro	9.5
Five Circles	309811	FIVECRCLPV 100.00	PV	N/A	N/A	Solar	74.9
Fost	309801	FOSTMPV 100.00	PV	N/A	N/A	Solar	54
Gaston	308675	1GASTONPV 44.000	PV	Solar	25	Solar	25
Gaston Shoals	307466	1GAST HY 2.4000	1	Hydro	5.7	Hydro	5.7
Granite	309793	6GRANITE 230.00	ВТ	N/A	N/A	Battery	197
Great Falls	307702	1GTFALLS 2.4000	1	Hydro	3	Hydro	3
Great Falls	307702	1GTFALLS 2.4000	2	Hydro	3	Hydro	3
Great Falls	307702	1GTFALLS 2.4000	5	Hydro	3	Hydro	3
Great Falls	307702	1GTFALLS 2.4000	6	Hydro	3	Hydro	3
Healing Springs	309859	HLNGSPRNGSPV100.00	PV	Solar	55	Solar	55
High Shoals	309615	1HGHSHLPV 44.000	PV	Solar	16	Solar	16
Hornet	309609	HORNETPV 100.00	PV	Solar	73	Solar	73
Hudson Place	309795	HUDPLACPV 100.00	PV	N/A	N/A	Solar	70.7
Joanna White	309719	JOANNAWPV 100.00	PV	Solar	37.5	Solar	37.5
Jocassee	307370	1JOCASSE1 14.400	1	Pumped Hydro	195	Pumped Hydro	195
Jocassee	307371	1JOCASSE2 14.400	2	Pumped Hydro	195	Pumped Hydro	195
Jocassee	307372	1JOCASSE3 14.400	3	Pumped Hydro	195	Pumped Hydro	195
Jocassee	307373	1JOCASSE4 14.400	4	Pumped Hydro	195	Pumped Hydro	195
Keowee	307195	1KEOWEE 13.800	1	Hydro	80	Hydro	80

Summer Peak 2027 & 20	35 Regional SERT	P V3 Models		20	027	20	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Keowee	308880	1KEOWEE2 13.800	2	Hydro	80	Hydro	80
Kings Mountain Energy Center	308653	1KMECS 18.000	1	Natural Gas	208	Natural Gas	208
Kings Mountain Energy Center	308654	1KMECG 21.000	2	Natural Gas	244	Natural Gas	244
Lee	307198	1LEE CT7 13.800	7	Natural Gas	43	Natural Gas	43
Lee	307882	1LEE CT8 13.800	8	Natural Gas	43	Natural Gas	43
Lee	308613	1LEECCS10 22.000	10	Natural Gas	329	Natural Gas	329
Lee	308614	1LEECCG11 18.000	11	Natural Gas	231	Natural Gas	231
Lee	308615	1LEECCG12 18.000	12	Natural Gas	231	Natural Gas	231
Lick Creek	309853	LICKCRKPV 100.00	PV	Solar	50	Solar	50
Lincoln	306509	1LINCLN1 13.800	1	Natural Gas	79	Natural Gas	79
Lincoln	306510	1LINCLN2 13.800	2	Natural Gas	79	Natural Gas	79
Lincoln	306511	1LINCLN3 13.800	3	Natural Gas	79	Natural Gas	79
Lincoln	306512	1LINCLN4 13.800	4	Natural Gas	79	Natural Gas	79
Lincoln	306513	1LINCLN5 13.800	5	Natural Gas	79	Natural Gas	79
Lincoln	306514	1LINCLN6 13.800	6	Natural Gas	79	Natural Gas	79
Lincoln	306515	1LINCLN7 13.800	7	Natural Gas	79	Natural Gas	79
Lincoln	306516	1LINCLN8 13.800	8	Natural Gas	79	Natural Gas	79
Lincoln	306517	1LINCLN9 13.800	9	Natural Gas	79	Natural Gas	79
Lincoln	306518	1LINCLN10 13.800	Α	Natural Gas	79	Natural Gas	79
Lincoln	306519	1LINCLN11 13.800	В	Natural Gas	79	Natural Gas	79
Lincoln	306520	1LINCLN12 13.800	С	Natural Gas	79	Natural Gas	79
Lincoln	306521	1LINCLN13 13.800	D	Natural Gas	79	Natural Gas	79
Lincoln	306522	1LINCLN14 13.800	Е	Natural Gas	79	Natural Gas	79
Lincoln	306523	1LINCLN15 13.800	F	Natural Gas	79	Natural Gas	79
Lincoln	306524	1LINCLN16 13.800	G	Natural Gas	79	Natural Gas	79
Lincoln	308692	1LINCLN17 22.000	Н	Natural Gas	525	Natural Gas	525
Lookout Tie	308080	1LOOKOUT 6.6000	1	Hydro	9.33	Hydro	9.33
Lookout Tie	308080	1LOOKOUT 6.6000	2	Hydro	9.33	Hydro	9.33

Summer Peak 2027 & 2	035 Regional SERT	TP V3 Models		20	027	20	2035		
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)		
Lookout Tie	308080	1LOOKOUT 6.6000	3	Hydro	9.33	Hydro	9.33		
Maiden Creek	308685	MAIDENCRKPV 100.00	PV	Solar	69	Solar	69		
Marshall	308081	1MARSHAL1 20.000	1	Coal	193	Natural Gas	390		
Marshall	308081	1MARSHAL1 20.000	L	Coal	195	N/A	N/A		
Marshall	308082	1MARSHAL3 24.000	3	Coal	705	Coal	705		
Marshall	308087	1MARSHAL2 20.000	2	Coal	200	Natural Gas	390		
Marshall	308087	1MARSHAL2 20.000	L	Coal	192	N/A	N/A		
Marshall	308088	1MARSHAL4 24.000	4	Coal	711	Coal	711		
McBride	308107	UNEMC14 100.00	PV	Solar	74.9	Solar	74.9		
McGuire	308228	1MCGUIRE1 24.000	1	Nuclear	1172	Nuclear	1172		
McGuire	308229	1MCGUIRE2 24.000	2	Nuclear	1165	Nuclear	1165		
Mill Creek	306082	1MILLCKG1 13.800	1	Natural Gas	76	Natural Gas	76		
Mill Creek	306083	1MILLCKG2 13.800	2	Natural Gas	76	Natural Gas	76		
Mill Creek	306084	1MILLCKG3 13.800	3	Natural Gas	76	Natural Gas	76		
Mill Creek	306086	1MILLCKG4 13.800	4	Natural Gas	76	Natural Gas	76		
Mill Creek	306087	1MILLCKG5 13.800	5	Natural Gas	76	Natural Gas	76		
Mill Creek	306088	1MILLCKG6 13.800	6	Natural Gas	76	Natural Gas	76		
Mill Creek	306090	1MILLCKG7 13.800	7	Natural Gas	76	Natural Gas	76		
Mill Creek	306091	1MILLCKG8 13.800	8	Natural Gas	76	Natural Gas	76		
Misenheimer	307527	MISENHEPV 100.00	PV	Solar	74.4	Solar	74.4		
Mocksville	307613	1MOCKSVPV 44.000	PV	Solar	12.9	Solar	12.9		
Monroe	307614	MONROEPV 100.00	BT	Battery	25	Battery	25		
Monroe	307614	MONROEPV 100.00	PV	Solar	53.6	Solar	25		
Mountain Island	308179	1MT ISLE 6.6000	1	Hydro	17	Hydro	17		
Mountain Island	308179	1MT ISLE 6.6000	2	Hydro	17	Hydro	17		
Mountain Island	308179	1MT ISLE 6.6000	3	Hydro	17	Hydro	17		
Mountain Island	308179	1MT ISLE 6.6000	4	Hydro	17	Hydro	17		
Nantahala	308558	1NANTAHA 13.200	1	Hydro	51	Hydro	51		
Newberry	309712	NEWBERYPV 100.00	PV	N/A	N/A	Solar	74.5		
Ninety-Nine Islands	307749	1NINETY9 2.2000	1	Hydro	15	Hydro	15		

Summer Peak 2027 & 20	035 Regional SERT	P V3 Models		20	027	20	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Oconee	307199	10CONEE1 19.000	1	Nuclear	878	Nuclear	878
Oconee	307200	10CONEE3 19.000	3	Nuclear	878	Nuclear	878
Oconee	307210	10CONEE2 19.000	2	Nuclear	878	Nuclear	878
Oxford	308083	10XFORD 6.6000	1	Hydro	20	Hydro	20
Oxford	308683	10XFORD2 6.6000	2	Hydro	20	Hydro	20
Partin	309606	PARTINPV 100.00	PV	Solar	50	Solar	50
Pelham	309716	1PELHAMPV 44.000	PV	Solar	32	Solar	32
Pinson	309810	1PINSONPV 44.000	PV	Solar	20	Solar	20
Quaker Creek	309808	1QUAKERCKPV 44.000	PV	Solar	35	Solar	35
Rhodhiss	308084	1RHODHIS 6.6000	1	Hydro	10	Hydro	10
Rhodhiss	308084	1RHODHIS 6.6000	2	Hydro	12	Hydro	10
Rhodhiss	308084	1RHODHIS 6.6000	3	Hydro	12	Hydro	10
Riverbend	309792	RIVERBNDBESS100.00	ВТ	N/A	N/A	Battery	115
Rockingham County	306828	1ROCKHMG04 18.000	4	Natural Gas	165	Natural Gas	165
Rockingham County	306829	1ROCKHMG05 18.000	5	Natural Gas	165	Natural Gas	165
Rockingham County	306831	1ROCKHMG01 18.000	1	Natural Gas	165	Natural Gas	165
Rockingham County	306832	1ROCKHMG02 18.000	2	Natural Gas	165	Natural Gas	165
Rockingham County	306833	1ROCKHMG03 18.000	3	Natural Gas	165	Natural Gas	165
Rowan	306991	1ROWANC1 18.000	1	Natural Gas	154	Natural Gas	154
Rowan	306992	1ROWANC2 18.000	2	Natural Gas	154	Natural Gas	154
Rowan	306993	1ROWANC3 18.000	3	Natural Gas	154	Natural Gas	154
Rowan	306994	1ROWANC4 18.000	4	Natural Gas	154	Natural Gas	154
Rowan	306995	1ROWANC5 18.000	5	Natural Gas	154	Natural Gas	154
Rowan	306996	1ROWANS1 18.000	6	Natural Gas	170	Natural Gas	170
Ruff	309608	1RUFFPV 44.000	PV	Solar	22	Solar	22
Rutabaga	309708	RUTAB PV 100.00	PV	N/A	N/A	Solar	69.75
Rutherford	306146	RUTHPV 100.00	PV	Solar	67	Solar	67
South Davidson	309807	SDAVDSNPV 100.00	PV	Solar	80	Solar	80
Speedway	309809	SPEEDWAYPV 100.00	PV	Solar	22.6	Solar	22.6
Stanly	308673	STANLYPV 100.00	PV	Solar	50	Solar	50

Summer Peak 2027 &	2035 Regional SERT	P V3 Models		2	.027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Stony Knoll	309789	1STONYKNLLPV44.000	PV	Solar	22.6	Solar	22.6
Sugar	309857	SUGARPV 100.00	PV	Solar	60	Solar	60
SunEd	308784	SUNED100 100.00	PV	Solar	15	Solar	15
Sweetwater	309728	SWATERPV 100.00	PV	Solar	34	Solar	34
Tennessee Creek	308518	1TENNCRK 4.1600	1	Hydro	11.5	Hydro	11.5
Thorpe	308600	1THORPE 6.6000	1	Hydro	21.6	Hydro	21.6
Thorpe	308600	1THORPE 6.6000	2	Hydro	3	Hydro	21.6
Turner	307599	1TURN HY 2.4000	1	Hydro	1.5	Hydro	1.5
Turner	307599	1TURN HY 2.4000	2	Hydro	1.5	Hydro	1.5
Tuxedo	307601	1TUX HYD 6.6000	1	Hydro	3.2	Hydro	3.2
Tuxedo	307601	1TUX HYD 6.6000	2	Hydro	3.2	Hydro	3.2
Two Hearted	309804	1TWOHRTDPV 44.000	PV	Solar	22	Solar	22
Tyger PV	309726	TYGERPV 100.00	ВТ	Battery	28	Battery	28
Tyger PV	309726	TYGERPV 100.00	PV	Solar	74.99	Solar	74.99
Wateree	309861	1WATEREE_U1 6.6000	1	Hydro	17	Hydro	17
Wateree	309862	1WATEREE_U2 6.6000	2	Hydro	17	Hydro	17
Wateree	309863	1WATEREE_U3 6.6000	3	Hydro	17	Hydro	17
Wateree	309864	1WATEREE_U4 6.6000	4	Hydro	17	Hydro	17
Wateree	309865	1WATEREE_U5 6.6000	5	Hydro	17	Hydro	17
West River	306972	WESTRVRPV 100.00	PV	Solar	40	Solar	40
Wilsons Branch	309800	WILSONBRPV 100.00	PV	N/A	N/A	Solar	72
Wylie	307840	1WYLIE H 6.6000	1	Hydro	18	Hydro	18
Wylie	307840	1WYLIE H 6.6000	2	Hydro	18	Hydro	18
Wylie	307840	1WYLIE H 6.6000	3	Hydro	18	Hydro	18
Wylie	307840	1WYLIE H 6.6000	4	Hydro	18	Hydro	18

VIII. Appendix 3: Duke Progress East BAA

The following information provides a more granular overview of the Duke Progress East BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A3.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Duke Progress East BAA)

Duke Progress East BAA	100-120	121-150	151-199	200-299	300-399	400-550
Duke Flogless Last BAA	kV	kV	kV	kV	kV	kV
Transmission lines – New						
(Circuit Mi.)						
Transmission Lines – Uprates ¹	86.8			186.7		
(Circuit Mi.)	00.0			100.7		
Transformers ² – New				1		
Transformers ² – Replacements						

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A3.2: Interface commitments¹ modeled in the SERTP Summer Peak models – Duke Progress East BAA

То	2027	2030	2035
Duke Carolinas	-1891	-1695	-1395
Duke Progress West	0	0	0
PJM	-270	-105	-105
Total	-2161	-1800	-1500

¹ A positive number represents a net export from the Duke Progress East BAA.

² The voltages shown represent the operating voltages on the high side terminals of the transformer.

A detailed listing of the changes in generation assumptions within the Duke Progress East BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A3.3 below. Table A3.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A3.5 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow model.

Table A3.3: Changes in Generation Assumptions Based Upon LSEs – Duke Progress East BAA

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
B&K Solar	Solar	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
Creed Solar	Solar		48	48	48	48	48	48	48	48	48
Culpepper Solar	Solar			74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
Elm City Surplus	Battery	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9	21.9
Gum Swamp Solar	Solar	80	80	80	80	80	80	80	80	80	80
Hyco Solar	Solar		80	80	80	80	80	80	80	80	80
IP Solar	Solar			75	75	75	75	75	75	75	75
Juniper Solar	Solar		74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
Knightdale Battery	Battery	100	100	100	100	100	100	100	100	100	100
Loftins Crossroads	Solar		75	75	75	75	75	75	75	75	75
Lotus Solar	Solar		75	75	75	75	75	75	75	75	75
Maple Leaf Solar	Solar	73	73	73	73	73	73	73	73	73	73
Martins Crossroads	Solar	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
New Hill BESS	Battery	56	56	56	56	56	56	56	56	56	56
Pig Basket Creek	Solar	80	80	80	80	80	80	80	80	80	80
Robinson Solar	Solar		76	76	76	76	76	76	76	76	76
Rollins Solar	PV		74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
Ross Solar	Solar			74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
Shorthorn Solar	Solar		60	60	60	60	60	60	60	60	60
Sleepy Creek Solar	Solar		80	80	80	80	80	80	80	80	80
Stevens Mills	Solar	80	80	80	80	80	80	80	80	80	80
Tillery Hydro	Hydro	6.26	6.26	6.26	6.26	6.26	6.26	6.26	6.26	6.26	6.26
Warsaw Surplus	Battery	30	30	30	30	30	30	30	30	30	30

Table A3.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – Duke Progress East BAA

SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Hamlet #2 and #3	110	110	110	110	110	110	110	110	110	110
Hamlet #6	55	55	55	55	55	55	55	55	55	55

Table A3.5: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model – Duke Progress East BAA

Summer Peak 2027 8	& 2035 Regional SEF	RTP V3 Models		20)27	20)35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Anson CT	304993	1ANSON CT1 13.800	1	Natural Gas	57.5	Natural Gas	57.5
Anson CT	304994	1ANSON CT2 13.800	2	Natural Gas	57.5	Natural Gas	57.5
Anson CT	304995	1ANSON CT3 13.800	3	Natural Gas	57.5	Natural Gas	57.5
Anson CT	304996	1ANSON CT4 13.800	4	Natural Gas	57.5	Natural Gas	57.5
Anson CT	304997	1ANSON CT5 13.800	5	Natural Gas	57.5	Natural Gas	57.5
Anson CT	304998	1ANSON CT6 13.800	6	Natural Gas	57.5	Natural Gas	57.5
B&K Solar	305364	1BKSOLGLV 0.6600	PV	N/A	75.78	Solar	75.78
Bay Tree Solar	305834	1BAYTRESOLGL0.6300	PV	Solar	71.3	Solar	71.3
Bladen Solar	305334	1BLADENSOLGL0.3700	PV	Solar	35	Solar	35
Blewett CT	304933	1BLW IC 1&2 13.800	C1	Natural Gas	13	Natural Gas	13
Blewett CT	304933	1BLW IC 1&2 13.800	C2	Natural Gas	13	Natural Gas	13
Blewett CT	304934	1BLW IC 3&4 13.800	C3	Natural Gas	13	Natural Gas	13
Blewett CT	304934	1BLW IC 3&4 13.800	C4	Natural Gas	13	Natural Gas	13
Blewett Hydro	304892	1BLEWETT 1-34.8000	1	Hydro	4	Hydro	4
Blewett Hydro	304892	1BLEWETT 1-34.8000	2	Hydro	4	Hydro	4
Blewett Hydro	304892	1BLEWETT 1-34.8000	3	Hydro	4	Hydro	4
Blewett Hydro	304893	1BLEWETT 4-64.8000	4	Hydro	5	Hydro	5
Blewett Hydro	304893	1BLEWETT 4-64.8000	5	Hydro	5	Hydro	5

Summer Peak 2027 & 20	35 Regional SEF	RTP V3 Models		20)27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Blewett Hydro	304893	1BLEWETT 4-64.8000	6	Hydro	5	Hydro	5
Brunswick Nuclear #1	304862	1BRUNSWICK#124.000	1	Nuclear	938	Nuclear	938
Brunswick Nuclear #2	304863	1BRUNSWICK#224.000	1	Nuclear	932	Nuclear	932
Buckleberry Canal Solar	305714	1BUKLEBSOLGL0.5500	PV	Solar	52.9	Solar	52.9
Bullocksville Solar	305644	1BULLOKSOLGL0.3850	PV	Solar	50.58	Solar	50.58
Cabin Creek Solar	305874	1CABCRKSOLGL0.5500	PV	Solar	71.2	Solar	71.2
County Line Solar	305384	1COLINSOL1GL0.3700	PV	Solar	71	Solar	71
Creed Solar	305514	1CREEDSOLGLV0.6600	PV	N/A	N/A	Solar	48.62
Crooked Run Solar	305884	1CROOKDSOLGL0.5500	PV	Solar	71.25	Solar	71.25
Culpepper Solar	305274	1CULPEPSOLGL0.6600	PV	N/A	N/A	Solar	75.78
Darlington County CT	304908	1DARL CO #1213.800	12	Natural Gas	115	Natural Gas	115
Darlington County CT	304909	1DARL CO #1313.800	13	Natural Gas	115	Natural Gas	115
Distributed Generation	304058	6HOLLY SPRG 230.00	BG	Biogas	7.3	Biogas	7.3
Distributed Generation	304058	6HOLLY SPRG 230.00	PV	Solar	1.214	Solar	1.214
Distributed Generation	304065	6ROXBOLDURRD230.00	PV	Solar	4.132	Solar	4.132
Distributed Generation	304068	6ROX BOWMAN 230.00	PV	Solar	15.08	Solar	15.08
Distributed Generation	304073	6RAL BL RIDG230.00	PV	Solar	1.118	Solar	1.118
Distributed Generation	304075	6BAHAMA 230.00	PV	Solar	5.119	Solar	5.119
Distributed Generation	304076	6RAL LEESV R230.00	PV	Solar	1.039	Solar	1.039
Distributed Generation	304080	60XFORD SOUT230.00	PV	Solar	15.954	Solar	15.954
Distributed Generation	304081	6CASTALIA 230.00	PV	Solar	18.948	Solar	18.948
Distributed Generation	304086	60XFORD NORT230.00	PV	Solar	27.986	Solar	27.986
Distributed Generation	304087	6HENDER EAST230.00	PV	Solar	33.353	Solar	33.353
Distributed Generation	304092	3ROXBOR 115T115.00	PV	Solar	9.101	Solar	9.101
Distributed Generation	304095	6YANCYVILLE 230.00	PV	Solar	14.99	Solar	14.99
Distributed Generation	304101	3HENDER NORT115.00	PV	Solar	25.138	Solar	25.138
Distributed Generation	304103	3WARRENTON 115.00	PV	Solar	31.27	Solar	31.27
Distributed Generation	304108	3LOUISBURG 115.00	PV	Solar	18.876	Solar	18.876
Distributed Generation	304109	3STALLING XR115.00	PV	Solar	21.144	Solar	21.144

Summer Peak 2027 & 20	035 Regional SEF	RTP V3 Models		20	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Distributed Generation	304110	3SPRING HOPE115.00	PV	Solar	6.755	Solar	6.755
Distributed Generation	304115	6CARY TRENTO230.00	PV	Solar	2.326	Solar	2.326
Distributed Generation	304116	3NASHVILLE 115.00	PV	Solar	12.253	Solar	12.253
Distributed Generation	304118	6RAL DU AIRP230.00	PV	Solar	1.179	Solar	1.179
Distributed Generation	304128	6CARY EVAN R230.00	PV	Solar	1.343	Solar	1.343
Distributed Generation	304133	6FUQUAY BELL230.00	PV	Solar	3.169	Solar	3.169
Distributed Generation	304134	3MONCURE 115.00	HY	Hydro	5.9	Hydro	5.9
Distributed Generation	304134	3MONCURE 115.00	PV	Solar	8.35	Solar	8.35
Distributed Generation	304140	6GARNER PANT230.00	PV	Solar	1.699	Solar	1.699
Distributed Generation	304146	3RAL NRTHSID115.00	PV	Solar	1.132	Solar	1.132
Distributed Generation	304151	6GARNER W OA230.00	PV	Solar	4.257	Solar	4.257
Distributed Generation	304152	3GARNER 115.00	PV	Solar	5.533	Solar	5.533
Distributed Generation	304153	3GARNER TRYO115.00	PV	Solar	2.58	Solar	2.58
Distributed Generation	304154	6ROLESVILLE 230.00	PV	Solar	1.174	Solar	1.174
Distributed Generation	304164	3KNIGHTDALE 115.00	PV	N/A	1.009	Solar	1.009
Distributed Generation	304165	3ZEBULON SU115.00	PV	Solar	5.605	Solar	5.605
Distributed Generation	304170	3CLAYTON 115.00	PV	Solar	4.713	Solar	4.713
Distributed Generation	304171	6AMBERLY 230.00	PV	Solar	2.03	Solar	2.03
Distributed Generation	304177	3SELMA 115 T115.00	PV	Solar	15.728	Solar	15.728
Distributed Generation	304178	6AUBURN 230.00	PV	Solar	1.463	Solar	1.463
Distributed Generation	304179	6WILSON MILL230.00	PV	Solar	10.632	Solar	10.632
Distributed Generation	304180	6GREEN LEVEL230.00	PV	Solar	1.637	Solar	1.637
Distributed Generation	304186	6EDMONDSON 230.00	PV	Solar	10.246	Solar	10.246
Distributed Generation	304187	6PA-SMTHFLD2230.00	PV	Solar	1.98	Solar	1.98
Distributed Generation	304188	6PA-SELMA#3 230.00	PV	Solar	1.98	Solar	1.98
Distributed Generation	304191	6WENDELL 230.00	PV	Solar	5.257	Solar	5.257
Distributed Generation	304193	6FOUR OAKS 230.00	BG	Biogas	1.76	Biogas	1.76
Distributed Generation	304193	6FOUR OAKS 230.00	PV	Solar	18.264	Solar	18.264
Distributed Generation	304194	6BENSON 230.00	PV	Solar	22.573	Solar	22.573

Plant	Bus Number	mmer Peak 2027 & 2035 Regional SERTP V3 Models				2035	
	bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Distributed Generation	304197	6DUNN 230.00	PV	Solar	7.165	Solar	7.165
Distributed Generation	304198	6BAILEY 230.00	PV	Solar	24.902	Solar	24.902
Distributed Generation	304199	6ARCH LODGE 230.00	PV	Solar	8.204	Solar	8.204
Distributed Generation	304202	3ERWIN115 SU115.00	PV	Solar	5.087	Solar	5.087
Distributed Generation	304207	6NEWTON GROV230.00	PV	Solar	16.877	Solar	16.877
Distributed Generation	304213	6FUQUAY 230.00	PV	Solar	11.359	Solar	11.359
Distributed Generation	304214	6ANGIER 230.00	PV	Solar	10.079	Solar	10.079
Distributed Generation	304215	6BUIES CREEK230.00	PV	Solar	12.429	Solar	12.429
Distributed Generation	304220	3LILLINGTON 115.00	PV	Solar	15.598	Solar	15.598
Distributed Generation	304222	6ROCKYMT230T230.00	PV	N/A	4.999	Solar	4.999
Distributed Generation	304227	3ELM CITY 115.00	PV	Solar	9.993	Solar	9.993
Distributed Generation	304229	6PA-FARMVILL230.00	PV	Solar	5	Solar	5
Distributed Generation	304235	3PA-W-11 115.00	PV	Solar	19.998	Solar	19.998
Distributed Generation	304236	3PA-W-2&3 115.00	PV	Solar	28.5	Solar	28.5
Distributed Generation	304240	3FREMONT 115.00	BG	Biogas	4.2	Biogas	4.2
Distributed Generation	304240	3FREMONT 115.00	PV	Solar	12.401	Solar	12.401
Distributed Generation	304244	3PA-W-5 115.00	PV	Solar	20	Solar	20
Distributed Generation	304246	6PA-W12 WEC 230.00	PV	Solar	10	Solar	10
Distributed Generation	304250	3ROSEWOOD 115.00	PV	Solar	10.069	Solar	10.069
Distributed Generation	304252	3PRINCETON 115.00	PV	Solar	20.128	Solar	20.128
Distributed Generation	304256	3CLINT FERRE115.00	BG	Biogas	1.76	Biogas	1.76
Distributed Generation	304256	3CLINT FERRE115.00	PV	Solar	10.225	Solar	10.225
Distributed Generation	304258	3CLINTON NTH115.00	PV	Solar	15.145	Solar	15.145
Distributed Generation	304260	3ROSEBORO 115.00	PV	Solar	11.036	Solar	11.036
Distributed Generation	304267	6GRANTHAM 230.00	BG	Biogas	3.18	Biogas	3.18
Distributed Generation	304267	6GRANTHAM 230.00	PV	Solar	19.502	Solar	19.502
Distributed Generation	304269	3MT OLV SUB 115.00	PV	Solar	18.475	Solar	18.475
Distributed Generation	304270	3MT OLV WEST115.00	PV	Solar	23.995	Solar	23.995
Distributed Generation	304273	3KORNEGAY SU115.00	PV	Solar	16.798	Solar	16.798

Plant Bus Number Bus Name Id Fuel Type Pmax (MW) Distributed Generation 304277 3MT OLV IND 115.00 PV Solar 3 Distributed Generation 304280 3BEULAVILLE 115.00 PV Solar 21.003 Distributed Generation 304281 3BELFAST 115.00 PV Solar 15.618 Distributed Generation 304282 3GOLDSB LANG115.00 PV Solar 14.174 Distributed Generation 304283 3NEW HOPE 115.00 PV Solar 10.284 Distributed Generation 304288 3LAGRANGE 115.00 PV Solar 20.02 Distributed Generation 304289 GFARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 12.02 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distrib	2035	
Distributed Generation 304280 3BEULAVILLE 115.00 PV Solar 21.003 Distributed Generation 304281 3BELFAST 115.00 PV Solar 15.618 Distributed Generation 304282 3GOLDSB LANG115.00 PV Solar 14.174 Distributed Generation 304283 3NEW HOPE 115.00 PV Solar 20.02 Distributed Generation 304288 3LAGRANGE 115.00 PV Solar 20.02 Distributed Generation 304289 6FARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distribute	Fuel Type	Pmax (MW)
Distributed Generation 304281 3BELFAST 115.00 PV Solar 15.618 Distributed Generation 304282 3GOLDSB LANG115.00 PV Solar 14.174 Distributed Generation 304283 3NEW HOPE 115.00 PV Solar 10.284 Distributed Generation 304288 3LAGRANGE 115.00 PV Solar 20.02 Distributed Generation 304289 6FARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304297 6JONESBORO 230.00 PV Solar 25.085 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 12.02 Distributed Generation 304301 3TROY 115.00 PV Solar 5.022 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 9.586 Distributed	Solar	3
Distributed Generation 304282 3GOLDSB LANG115.00 PV Solar 14.174 Distributed Generation 304283 3NEW HOPE 115.00 PV Solar 10.284 Distributed Generation 304288 3LAGRANGE 115.00 PV Solar 20.02 Distributed Generation 304289 6FARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304297 6JONESBORO 230.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 PV Solar 5.022 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 9.017 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distribute	Solar	21.003
Distributed Generation 304283 3NEW HOPE 115.00 PV Solar 10.284 Distributed Generation 304288 3LAGRANGE 115.00 PV Solar 20.02 Distributed Generation 304289 6FARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 9.483 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 9.069 Distributed Gene	Solar	15.618
Distributed Generation 304288 3LAGRANGE 115.00 PV Solar 20.02 Distributed Generation 304289 6FARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304297 6JONESBORO 230.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	14.174
Distributed Generation 304289 6FARMVILLE 230.00 PV Solar 5 Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304297 6JONESBORO 230.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 GELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304334 GBYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	10.284
Distributed Generation 304294 3BISCOE SUB 115.00 PV Solar 25.085 Distributed Generation 304297 GJONESBORO 230.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBOR NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 GELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 GPITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 GBYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	20.02
Distributed Generation 304297 6JONESBORO 230.00 PV Solar 12.02 Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 GELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 GPITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 GBYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	5
Distributed Generation 304298 3ROBBINS 115.00 PV Solar 5.022 Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 GELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 GPITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 GBYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	25.085
Distributed Generation 304301 3TROY 115.00 HY Hydro 1.782 Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 GELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 GPITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 GBYNUM 230.00 PV Solar 19.882	Solar	12.02
Distributed Generation 304301 3TROY 115.00 PV Solar 5.015 Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	5.022
Distributed Generation 304303 3SEAGROVE 115.00 PV Solar 9.483 Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 GELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 GPITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 GBYNUM 230.00 PV Solar 19.882	Hydro	1.782
Distributed Generation 304306 3CANDOR 115.00 PV Solar 19.856 Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	5.015
Distributed Generation 304312 3ASHEBOR E T115.00 PV Solar 5.017 Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	9.483
Distributed Generation 304319 3ASHEBORO NO115.00 PV Solar 9.958 Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	19.856
Distributed Generation 304320 3ROCKHAM SUB115.00 PV Solar 5.069 Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	5.017
Distributed Generation 304321 3GLOBAL TPAR115.00 PV Solar 9.994 Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	9.958
Distributed Generation 304326 3LIBERTY 115.00 PV Solar 12.065 Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	5.069
Distributed Generation 304327 6ELLERBE 230.00 PV Solar 2.009 Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	9.994
Distributed Generation 304328 3RAMSEUR 115115.00 HY Hydro 1.225 Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	12.065
Distributed Generation 304333 6PITTSBORO 230.00 PV Solar 10.898 Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	2.009
Distributed Generation 304334 6BYNUM 230.00 PV Solar 4.726 Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Hydro	1.225
Distributed Generation 304335 3SILER CITY 115.00 PV Solar 19.882	Solar	10.898
	Solar	4.726
	Solar	19.882
Distributed Generation 304341 3MTGILEAD 115.00 PV Solar 3.528	Solar	3.528
Distributed Generation 304344 6WADESBORO 230.00 PV Solar 20.006	Solar	20.006
Distributed Generation 304345 3ROCKHAM WES115.00 PV Solar 5.066	Solar	5.066
Distributed Generation 304355 6IND 304355 230.00 PV Solar 24.502	Solar	24.502
Distributed Generation 304359 6WADESBOW SU230.00 PV Solar 12.314	Solar	12.314

Summer Peak 2027 & 20	35 Regional SEF	RTP V3 Models		20	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Distributed Generation	304360	6WEST END SU230.00	PV	Solar	20.282	Solar	20.282
Distributed Generation	304364	3ABERDEEN 115.00	PV	Solar	3.233	Solar	3.233
Distributed Generation	304367	3LAKEVIEW 115.00	PV	Solar	5.037	Solar	5.037
Distributed Generation	304374	6SANF GARDEN230.00	PV	Solar	17.297	Solar	17.297
Distributed Generation	304376	6SANF DP RVR230.00	PV	Solar	14.998	Solar	14.998
Distributed Generation	304381	6RAEFORD S23230.00	PV	Solar	10	Solar	10
Distributed Generation	304401	3VANDERSUB T115.00	PV	Solar	5.155	Solar	5.155
Distributed Generation	304406	3ST PAULS 115.00	PV	Solar	19.984	Solar	19.984
Distributed Generation	304408	3BEARD 115.00	PV	Solar	20.075	Solar	20.075
Distributed Generation	304410	3GODWIN 115.00	PV	Solar	18.414	Solar	18.414
Distributed Generation	304413	3RAEFORD NOR115.00	PV	Solar	10.367	Solar	10.367
Distributed Generation	304418	6MCCOLL SUB 230.00	PV	Solar	8.947	Solar	8.947
Distributed Generation	304420	3MAXTON APT 115.00	PV	Solar	19.8	Solar	19.8
Distributed Generation	304421	3LAURNB115WT115.00	PV	Solar	21.309	Solar	21.309
Distributed Generation	304422	6LAURINBGCIT230.00	PV	Solar	24.984	Solar	24.984
Distributed Generation	304423	6LAUREL HILL230.00	PV	Solar	24.949	Solar	24.949
Distributed Generation	304430	3RED SPR SUB115.00	PV	Solar	19.91	Solar	19.91
Distributed Generation	304431	3SHANNON 115.00	PV	Solar	21.072	Solar	21.072
Distributed Generation	304435	3MAXTON 115.00	PV	Solar	23.611	Solar	23.611
Distributed Generation	304436	3PEMBROKE 115.00	PV	Solar	16.222	Solar	16.222
Distributed Generation	304439	3PA-LUMB#4 115.00	PV	Solar	2.036	Solar	2.036
Distributed Generation	304443	6ROWLAND SUB230.00	PV	Solar	9.975	Solar	9.975
Distributed Generation	304445	6CHOCOWINITY230.00	PV	Solar	34.527	Solar	34.527
Distributed Generation	304446	6WEATHERSPOO230.00	PV	Solar	26.381	Solar	26.381
Distributed Generation	304448	3FAIRMONT SU115.00	PV	Solar	28.644	Solar	28.644
Distributed Generation	304452	6GREENVILE W230.00	PV	Solar	9.998	Solar	9.998
Distributed Generation	304459	3GRIFTON 115.00	PV	Solar	25.221	Solar	25.221
Distributed Generation	304462	6BAYBORO 230.00	PV	Solar	10.1	Solar	10.1
Distributed Generation	304463	6NEW BERN WE230.00	BG	Biogas	4	Biogas	4

Distributed Generation 304463 6NEW BERN WE230.00 PV Solar 25.022 Solar 2.5	mmer Peak 2027 & 203	5 Regional SER	RTP V3 Models		20)27	2035	
Distributed Generation 304464 3BRIDGETON 115.00 PV Solar 10.001 Solar Distributed Generation 304473 6PA-WASHINTO230.00 PV Solar 27.5 Solar Distributed Generation 304476 3IND 304476 115.00 A Biogas 38 Biogas Distributed Generation 304481 3PA-AYDEN 115.00 PV Solar 4.999 Solar Distributed Generation 304483 3SNOW HILL 115.00 PV Solar 13.99 Solar Distributed Generation 304504 6WARSAW 230 230.00 PV Solar 14.963 Solar Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 1 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 17.063 Solar 2 Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar Distributed Generation 304521 6CATHERN LAK230.00 BG	int	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Distributed Generation 304473 6PA-WASHINTO230.00 PV Solar 27.5 Solar Distributed Generation 304476 3IND 304476 115.00 A Biogas 38 Biogas Distributed Generation 304481 3PA-AYDEN 115.00 PV Solar 4.999 Solar Distributed Generation 304483 3SNOW HILL 115.00 PV Solar 13.99 Solar Distributed Generation 304504 6WARSAW 230 230.00 PV Solar 34.963 Solar 3 Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 3 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 1.753 Biogas Distributed Generation 304521 6CATHERN LAK230.00 PV	stributed Generation	304463	6NEW BERN WE230.00	PV	Solar	25.022	Solar	25.022
Distributed Generation 304476 3IND 304476 115.00 A Biogas 38 Biogas Distributed Generation 304481 3PA-AYDEN 115.00 PV Solar 4.999 Solar Distributed Generation 304483 3SNOW HILL 115.00 PV Solar 13.99 Solar Distributed Generation 304504 6WARSAW 230 230.00 PV Solar 34.963 Solar 3 Distributed Generation 304505 6ROSE HILL 230.00 PV Solar 16.953 Solar 3 Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 3 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 19.776 Solar 2 Distributed Generation 304521 6CATHERN LAK230.00 BG Biogas 1.753 Biogas Distributed Generation 304526 6RHEMS 230.00 <td>tributed Generation</td> <td>304464</td> <td>3BRIDGETON 115.00</td> <td>PV</td> <td>Solar</td> <td>10.001</td> <td>Solar</td> <td>10.001</td>	tributed Generation	304464	3BRIDGETON 115.00	PV	Solar	10.001	Solar	10.001
Distributed Generation 304481 3PA-AYDEN 115.00 PV Solar 4.999 Solar Distributed Generation 304483 3SNOW HILL 115.00 PV Solar 13.99 Solar Distributed Generation 304504 6WARSAW 230 230.00 PV Solar 34.963 Solar 3 Distributed Generation 304505 6ROSE HILL 230.00 PV Solar 16.953 Solar 3 Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 3 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 22.303 Solar 22.303 Solar 3 Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 19.776 Solar 3 3 Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 20.19 Solar <td>tributed Generation</td> <td>304473</td> <td>6PA-WASHINTO230.00</td> <td>PV</td> <td>Solar</td> <td>27.5</td> <td>Solar</td> <td>27.5</td>	tributed Generation	304473	6PA-WASHINTO230.00	PV	Solar	27.5	Solar	27.5
Distributed Generation 304483 3SNOW HILL 115.00 PV Solar 13.99 Solar Distributed Generation 304504 6WARSAW 230 230.00 PV Solar 34.963 Solar 3 Distributed Generation 304505 6ROSE HILL 230.00 PV Solar 16.953 Solar 1 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar 1 Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 2 Distributed Generation 304513 3BURGAW SUB 115.00 PV Solar 19.776 Solar 2 Distributed Generation 304521 6CATHERN LAK230.00 BG Biogas 1.753 Biogas Distributed Generation 304527 6SWANSBORO 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar Distributed Generation	tributed Generation	304476	3IND 304476 115.00	Α	Biogas	38	Biogas	38
Distributed Generation 304504 6WARSAW 230 230.00 PV Solar 34.963 Solar Distributed Generation 304505 6ROSE HILL 230.00 PV Solar 16.953 Solar 1 Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 1 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 2 Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 19.776 Solar 1 Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 5.327 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 4.695 Solar Distributed Generation 304528	tributed Generation	304481	3PA-AYDEN 115.00	PV	Solar	4.999	Solar	4.999
Distributed Generation 304505 6ROSE HILL 230.00 PV Solar 16.953 Solar 1 Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 3 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 2 Distributed Generation 3045213 3BURGAW SUB 115.00 PV Solar 19.776 Solar 1 Distributed Generation 304521 6CATHERN LAK230.00 BG Biogas 1.753 Biogas Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 5.327 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.19 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.695 Solar Distributed Generation 304566 <t< td=""><td>stributed Generation</td><td>304483</td><td>3SNOW HILL 115.00</td><td>PV</td><td>Solar</td><td>13.99</td><td>Solar</td><td>13.99</td></t<>	stributed Generation	304483	3SNOW HILL 115.00	PV	Solar	13.99	Solar	13.99
Distributed Generation 304506 6DOVER 230.00 PV Solar 17.063 Solar 1 Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 2 Distributed Generation 304513 3BURGAW SUB 115.00 PV Solar 19.776 Solar 1 Distributed Generation 304521 6CATHERN LAK230.00 BG Biogas 1.753 Biogas Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 5.327 Solar Distributed Generation 304527 6SWANSBORO 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304570 3CLARKTON 115.00 </td <td>tributed Generation</td> <td>304504</td> <td>6WARSAW 230 230.00</td> <td>PV</td> <td>Solar</td> <td>34.963</td> <td>Solar</td> <td>34.963</td>	tributed Generation	304504	6WARSAW 230 230.00	PV	Solar	34.963	Solar	34.963
Distributed Generation 304508 3PA-KINSTON 115.00 PV Solar 4.999 Solar Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 22.303 Solar 22.303 Solar 23.305 Solar 24.305 Solar 22.305 Solar 24.305 Solar 24.305 Solar 24.305 Solar 25.305	stributed Generation	304505	6ROSE HILL 230.00	PV	Solar	16.953	Solar	16.953
Distributed Generation 304512 3WALLACE SUB115.00 PV Solar 22.303 Solar 2 Distributed Generation 304513 3BURGAW SUB 115.00 PV Solar 19.776 Solar 1 Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 5.327 Solar Distributed Generation 304527 6SWANSBORO 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar Distributed Generation 304532 3VISTA 115.00 PV Solar 4.695 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar Distributed Generation 304570 3CLARKTON 115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Sola	stributed Generation	304506	6DOVER 230.00	PV	Solar	17.063	Solar	17.063
Distributed Generation 304513 3BURGAW SUB 115.00 PV Solar 19.776 Solar 105tributed Generation 304521 6CATHERN LAK230.00 BG Biogas 1.753	stributed Generation	304508	3PA-KINSTON 115.00	PV	Solar	4.999	Solar	4.999
Distributed Generation 304521 6CATHERN LAK230.00 BG Biogas 1.753 Biogas Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 5.327 Solar Distributed Generation 304527 6SWANSBORO 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar Distributed Generation 304532 3VISTA 115.00 PV Solar 4.695 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 15.01 Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 17.096 Solar	stributed Generation	304512	3WALLACE SUB115.00	PV	Solar	22.303	Solar	22.303
Distributed Generation 304521 6CATHERN LAK230.00 PV Solar 5.327 Solar Distributed Generation 304527 6SWANSBORO 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar 20.892 Solar Distributed Generation 304532 3VISTA 115.00 PV Solar 4.695 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 17.096	stributed Generation	304513	3BURGAW SUB 115.00	PV	Solar	19.776	Solar	19.776
Distributed Generation 304527 6SWANSBORO 230.00 PV Solar 20.19 Solar Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar 2 Distributed Generation 304532 3VISTA 115.00 PV Solar 4.695 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar 1 Distributed Generation 304589 3CHADBORN 115.00 PV Solar	stributed Generation	304521	6CATHERN LAK230.00	BG	Biogas	1.753	Biogas	1.753
Distributed Generation 304528 6RHEMS 230.00 PV Solar 20.892 Solar 20.892 Distributed Generation 304532 3VISTA 115.00 PV Solar 4.695 Solar 20.892 Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar 20.892 Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar 20.892 Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar 20.892 Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar 20.892 Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar 20.892 Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar 20.892 Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar 20.892 Distributed Generation 304584 GGARLAND 230.00 PV Solar 10.006 Solar 20.892 Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 20.8922 Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 20.8922 Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 10.011	stributed Generation	304521	6CATHERN LAK230.00	PV	Solar	5.327	Solar	5.327
Distributed Generation 304532 3VISTA 115.00 PV Solar 4.695 Solar Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar 10.413 Solar Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar 10.947 Solar Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar 10.006 Solar Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 10.011 Solar 10	stributed Generation	304527	6SWANSBORO 230.00	PV	Solar	20.19	Solar	20.19
Distributed Generation 304565 3EAGLE ISLAN115.00 PV Solar 4.634 Solar Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 17.096	stributed Generation	304528	6RHEMS 230.00	PV	Solar	20.892	Solar	20.892
Distributed Generation 304566 3IND 304566 115.00 PV Solar 10.413 Solar 10.413 Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar 10.413 Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar 10.5 So	tributed Generation	304532	3VISTA 115.00	PV	Solar	4.695	Solar	4.695
Distributed Generation 304570 3CLARKTON 115.00 PV Solar 11.947 Solar 1 Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 1	stributed Generation	304565	3EAGLE ISLAN115.00	PV	Solar	4.634	Solar	4.634
Distributed Generation 304572 3ELIZTOWN SU115.00 PV Solar 4.8 Solar Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar 10.006 Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 10.011 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011	tributed Generation	304566	3IND 304566 115.00	PV	Solar	10.413	Solar	10.413
Distributed Generation 304574 3BLADENBORO 115.00 PV Solar 14.53 Solar Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar 10.006 Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 10.011 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 10.011 Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 10.011	stributed Generation	304570	3CLARKTON 115.00	PV	Solar	11.947	Solar	11.947
Distributed Generation 304575 3LAKE WACCA 115.00 PV Solar 5.04 Solar Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar 10.006 Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 10.011 Solar 10.011 Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 10.011 Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 10.011	tributed Generation	304572	3ELIZTOWN SU115.00	PV	Solar	4.8	Solar	4.8
Distributed Generation 304584 6GARLAND 230.00 PV Solar 10.006 Solar 10.006 Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 10.011 Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 10.011 Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 10.011	tributed Generation	304574	3BLADENBORO 115.00	PV	Solar	14.53	Solar	14.53
Distributed Generation 304589 3CHADBORN 115.00 PV Solar 13.827 Solar 10.011 Solar Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 10.011 Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 10.012 S	tributed Generation	304575	3LAKE WACCA 115.00	PV	Solar	5.04	Solar	5.04
Distributed Generation 304593 3WHITEVL IND115.00 PV Solar 10.011 Solar 1 Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 1	stributed Generation	304584	6GARLAND 230.00	PV	Solar	10.006	Solar	10.006
Distributed Generation 304596 3TABOR CITY 115.00 PV Solar 17.096 Solar 1	tributed Generation	304589	3CHADBORN 115.00	PV	Solar	13.827	Solar	13.827
	tributed Generation	304593	3WHITEVL IND115.00	PV	Solar	10.011	Solar	10.011
Distributed Generation 304599 3FAIR BLUFF 115.00 PV Solar 5 Solar	stributed Generation	304596	3TABOR CITY 115.00	PV	Solar	17.096	Solar	17.096
	tributed Generation	304599	3FAIR BLUFF 115.00	PV	Solar	5	Solar	5
Distributed Generation 304609 3SAMARIA 115.00 PV Solar 29.091 Solar 2	tributed Generation	304609	3SAMARIA 115.00	PV	Solar	29.091	Solar	29.091

Summer Peak 2027 & 203	35 Regional SEF	RTP V3 Models		20	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Distributed Generation	304613	3FLOR MARBLU115.00	PV	Solar	10.213	Solar	10.213
Distributed Generation	304620	6WILM WIN PR230.00	PV	Solar	1.224	Solar	1.224
Distributed Generation	304623	3WHITEVIL115115.00	PV	Solar	12.159	Solar	12.159
Distributed Generation	304627	3DELCO 115.00	PV	Solar	19.555	Solar	19.555
Distributed Generation	304629	3NICHOLS 115.00	PV	Solar	5.071	Solar	5.071
Distributed Generation	304630	3MULLINS 115.00	PV	Solar	6.141	Solar	6.141
Distributed Generation	304632	3MARION115 T115.00	PV	Solar	9.111	Solar	9.111
Distributed Generation	304637	3TROY BURN \$115.00	PV	Solar	10.017	Solar	10.017
Distributed Generation	304644	3PAMPLICO 115.00	PV	Solar	6.887	Solar	6.887
Distributed Generation	304645	3HEMINGWAY 115.00	PV	Solar	10.086	Solar	10.086
Distributed Generation	304647	3MAR BYPASS 115.00	PV	Solar	19.677	Solar	19.677
Distributed Generation	304649	3DARL PINEVI115.00	PV	Solar	8.006	Solar	8.006
Distributed Generation	304654	3DILLON 115.00	PV	Solar	6.318	Solar	6.318
Distributed Generation	304659	3FLOSUB115WT115.00	PV	Solar	1.237	Solar	1.237
Distributed Generation	304660	3DARLINGTON 115.00	PV	Solar	12.715	Solar	12.715
Distributed Generation	304664	6DILLON MAPL230.00	PV	Solar	10.043	Solar	10.043
Distributed Generation	304671	6FLOR SARDIS230.00	PV	Solar	5.282	Solar	5.282
Distributed Generation	304672	6HARTS SEGAR230.00	PV	Solar	4.429	Solar	4.429
Distributed Generation	304674	60LANTA 230.00	PV	Solar	2.077	Solar	2.077
Distributed Generation	304675	6LAKE CITY 230.00	PV	Solar	4.145	Solar	4.145
Distributed Generation	304676	6KINGSTREE N230.00	PV	Solar	11.026	Solar	11.026
Distributed Generation	304681	3MANNING 115.00	PV	Solar	4.09	Solar	4.09
Distributed Generation	304692	3IND 304692 115.00	BG	Biogas	1.546	Biogas	1.546
Distributed Generation	304701	6SUMMERTON 230.00	PV	Solar	4.1	Solar	4.1
Distributed Generation	304703	6SUMTER NORT230.00	PV	Solar	2.181	Solar	2.181
Distributed Generation	304705	6SOCIETY HIL230.00	PV	Solar	2.015	Solar	2.015
Distributed Generation	304711	6ELLIOTT SUB230.00	PV	Solar	10.015	Solar	10.015
Distributed Generation	304712	6BISHOPVILLE230.00	PV	Solar	34.015	Solar	34.015
Distributed Generation	304714	3JEFFERSN SU115.00	PV	Solar	2.012	Solar	2.012

Summer Peak 2027 & 20	35 Regional SER	RTP V3 Models		20	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Distributed Generation	304715	3HARTSVILLE 115.00	PV	Solar	17.333	Solar	17.333
Distributed Generation	304719	3CHERAW 115.00	PV	Solar	2.956	Solar	2.956
Distributed Generation	305001	6E1-CHAD PEA230.00	PV	Solar	1	Solar	1
Distributed Generation	305009	6E1-DAWSCREE230.00	PV	Solar	1.2	Solar	1.2
Distributed Generation	305031	6E4-BEVERAGE230.00	BG	Biogas	1.3	Biogas	1.3
Distributed Generation	305034	6E4-POWELL 230.00	PV	Solar	2.299	Solar	2.299
Distributed Generation	305054	6E13-FARMVIL230.00	BG	Biogas	1.75	Biogas	1.75
Distributed Generation	305061	3E9-DAWSON 115.00	PV	Solar	1.99	Solar	1.99
Distributed Generation	305062	3E9-EAGLE NS115.00	PV	Solar	5.002	Solar	5.002
Distributed Generation	305075	6E9-W ONSLOW230.00	PV	Solar	1.99	Solar	1.99
Distributed Generation	305092	3E10-HOG SWM115.00	PV	Solar	7.999	Solar	7.999
Distributed Generation	305097	3E10-RENNERT115.00	PV	Solar	1.998	Solar	1.998
Distributed Generation	305098	3E10-ROCKFIS115.00	BG	Biogas	2.118	Biogas	2.118
Distributed Generation	305098	3E10-ROCKFIS115.00	PV	Solar	1.999	Solar	1.999
Distributed Generation	305099	3E10-WESTLUM115.00	PV	Solar	1.999	Solar	1.999
Distributed Generation	305107	3E14-ETHER 115.00	PV	Solar	3.989	Solar	3.989
Distributed Generation	305109	3E14-LIBERTY115.00	PV	Solar	6.5	Solar	6.5
Distributed Generation	305110	3E14-PARKWOO115.00	PV	Solar	1.999	Solar	1.999
Distributed Generation	305112	3E14-TROY 115.00	PV	Solar	1.99	Solar	1.99
Distributed Generation	305113	3E14-ULAH 115.00	PV	Solar	6.125	Solar	6.125
Distributed Generation	305114	3E14-ROBBINS115.00	PV	Solar	4.998	Solar	4.998
Distributed Generation	305129	3E15-GRAYSCR115.00	PV	Solar	5.997	Solar	5.997
Distributed Generation	305131	3E15-HARGROV115.00	PV	Solar	1.5	Solar	1.5
Distributed Generation	305134	3E15-VANDER 115.00	PV	Solar	1	Solar	1
Distributed Generation	305152	3E17-DUDLEY 115.00	PV	Solar	2	Solar	2
Distributed Generation	305159	3E17-LAGRANG115.00	PV	Solar	2	Solar	2
Distributed Generation	305160	3E17-MT OLIV115.00	PV	Solar	1.999	Solar	1.999
Distributed Generation	305162	3E17-ROSEWOO115.00	PV	Solar	2	Solar	2
Eden Solar	305324	1EDENSOL1GLV0.3800	PV	Solar	24.4	Solar	24.4

ımmer Peak 2027 & 2035 Regional SERTP V3 Models				2027		2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Eden Solar	305327	1EDENSOL2GLV0.3800	PV	Solar	24.4	Solar	24.4
Elm City Solar	305314	1ELMCTYSOLGL0.3600	PV	Solar	40.7	Solar	40.7
Elm City Surplus Battery	305316	1ELMCTYSOL2G0.6900	BT	N/A	22.9	Battery	22.9
Fayetteville Butler Warner	304940	1FAY PWC1 13.800	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304941	1FAY PWC2 13.800	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304942	1FAY PWC3 13.200	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304943	1FAY PWC4 13.200	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304944	1FAY PWC5 13.800	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304945	1FAY PWC6 13.800	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304946	1FAY PWC7 13.800	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304947	1FAY PWC8 13.800	Α	Natural Gas	20	Natural Gas	20
Fayetteville Butler Warner	304948	1FAY PWC ST 13.800	Α	Natural Gas	60	Natural Gas	60
Fayetteville Solar	305224	1FAYSOL-GLV 0.4800	PV	Solar	23.4	Solar	23.4
Fox Creek Solar	305664	1FOXCRKSOLGL0.5500	PV	Solar	50.2	Solar	50.2
Frazier Solar	305674	1FRAZERSOLGL0.5500	PV	Solar	51	Solar	51
Gold Valley Solar	305464	1GOLDVYSOLGL0.5500	PV	Solar	80	Solar	80
Gum Swamp Solar	305564	1GMSWMPSOLGL0.6300	PV	N/A	81.33	Solar	81.33
Hamlet CT	304987	1HAMLET CT1 13.800	1	Natural Gas	56	Natural Gas	56
Hamlet CT	304988	1HAMLET CT2 13.800	2	Natural Gas	56	Natural Gas	56
Hamlet CT	304989	1HAMLET CT3 13.800	3	Natural Gas	56	Natural Gas	56
Hamlet CT	304990	1HAMLET CT4 13.800	4	Natural Gas	56	Natural Gas	56
Hamlet CT	304991	1HAMLET CT5 13.800	5	Natural Gas	56	Natural Gas	56
Hamlet CT	304992	1HAMLET CT6 13.800	6	Natural Gas	56	Natural Gas	56
Harris Nuclear	304865	1HARRIS 22.000	1	Nuclear	964.0001	Nuclear	964.0001
Hyco Solar	305504	1HYCOSOLGLV 0.6300	PV	N/A	81.32	Solar	81.32
Industrial Gen.	304012	3UWHARRIE LF115.00	1	Biogas	9	Biogas	9
Industrial Gen.	304455	6IND 304455 230.00	Α	Other	42	Other	42
Industrial Gen.	304472	6IND 304472 230.00	1	Biogas	45	Biogas	45
Industrial Gen.	304641	3IND 304641 115.00	1	Coal/Biogas	68	Coal/Biogas	68

Summer Peak 2027 & 20	35 Regional SEF	RTP V3 Models		20)27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
IP Solar	305684	1IPSOLGLV 0.6300	PV	N/A	N/A	Solar	76.1
Juniper Solar	305284	1JNIPERSOLGL0.6600	PV	N/A	75.81	Solar	75.81
Knightdale BESS	305844	1KNIGHTBATGL0.6300	ВТ	N/A	100	Battery	100
Lee Steam Plant	304961	1LEE CC_1A 16.500	1A	Natural Gas	170	Natural Gas	170
Lee Steam Plant	304962	1LEE CC_1B 16.500	1B	Natural Gas	170	Natural Gas	170
Lee Steam Plant	304963	1LEE CC_1C 16.500	1C	Natural Gas	170	Natural Gas	170
Lee Steam Plant	304964	1LEE CC_S1 19.500	S1	Solar	378	Solar	378
Lejeune Battery	304537	6LEJEUNE#2 230.00	ВТ	Battery	11	Battery	11
Lejeune Solar	304537	6LEJEUNE#2 230.00	PV	Solar	12.75	Solar	12.75
Loftins Crossroads Solar	305590	6LOFTNSOLTAP230.00	PV	N/A	75	Solar	75
Lotus Solar	305214	1LOTUSSOLGLV0.6300	PV	N/A	N/A	Solar	76.17
Lumberton Cogen	304603	3COG LUMB SU115.00	1	Biogas	32	Biogas	32
Maple Leaf Solar	305604	1MAPLLFSOLGL0.6300	PV	N/A	81.19	Solar	81.19
Martins Crossroads	305625	3Q525 115.00	PV	N/A	74.9	Solar	74.9
Maxton Solar	305424	1MAXTNSOLGLV0.3700	PV	Solar	34.4	Solar	34.4
Mayo Plant	304873	1MAYO #1 20.000	1	Coal	704	Coal	704
NCSU Gen.	304011	3NCSU GEN 115.00	1	Natural Gas	11	Natural Gas	11
New Hill BESS	305254	1NEWHILBATGL0.6900	ВТ	N/A	61.54	Battery	61.54
Nutbush Solar	305584	1NUTBSHSOLGL0.6300	PV	Solar	35.5	Solar	35.5
Pig Basket Creek Solar	305434	1PIGBCSOLGLV0.6600	PV	N/A	80	Solar	80
Richmond County Plant	304971	1RICH CT1 18.000	1	Natural Gas	165	Natural Gas	165
Richmond County Plant	304972	1RICH CT2 18.000	2	Natural Gas	164	Natural Gas	164
Richmond County Plant	304973	1RICH CT3 18.000	3	Natural Gas	160	Natural Gas	160
Richmond County Plant	304974	1RICH CT4 18.000	4	Natural Gas	159	Natural Gas	159
Richmond County Plant	304975	1RICH CT6 18.000	6	Natural Gas	152	Natural Gas	152
Richmond County Plant	304976	1RICH CT7 18.000	7	Natural Gas	152	Natural Gas	152
Richmond County Plant	304977	1RICH CT8 18.000	8	Natural Gas	152	Natural Gas	152
Richmond County Plant	304978	1RICH ST4 18.000	S4	Natural Gas	171	Natural Gas	171
Richmond County Plant	304979	1RICH CT9 16.500	9	Natural Gas	178	Natural Gas	178

Summer Peak 2027 & 20	35 Regional SEF	RTP V3 Models		20	27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Richmond County Plant	304980	1RICH CT10 16.500	10	Natural Gas	178	Natural Gas	178
Richmond County Plant	304981	1RICH ST5 18.000	S 5	Natural Gas	252	Natural Gas	252
Robinson Nuclear	304864	1ROBINSON#2 22.000	1	Nuclear	759	Nuclear	759
Robinson Solar	305374	1ROBNSNSOLGL0.6300	PV	N/A	N/A	Solar	77.25
Rollins Solar	305294	1ROLINSSOLGL0.6600	PV	N/A	N/A	Solar	75.77
Roslin Solar	305414	1ROSLNSOL1GL0.3700	PV	Solar	40	Solar	40
Roslin Solar	305417	1ROSLNSOL2GL0.3700	PV	Solar	39	Solar	39
Ross Solar	305304	1ROSSSOLGLV 0.6600	PV	N/A	N/A	Solar	75.88
Rowan Solar	305394	1ROWANSOL1GL0.3570	PV	Solar	20.5	Solar	20.5
Rowan Solar	305397	1ROWANSOL2GL0.3570	PV	Solar	18.9	Solar	18.9
Roxboro Plant	304869	1ROXBORO #1 22.000	1	Coal	379	Coal	379
Roxboro Plant	304870	1ROXBORO #2 24.000	1	Coal	668	Coal	668
Roxboro Plant	304871	1ROXBORO #3 24.000	1	Coal	694	Coal	694
Roxboro Plant	304872	1ROXBORO #4 24.000	1	Coal	698	Coal	698
Sandy Bottom Solar	305454	1SANDYBSOLGL0.6000	PV	Solar	49.6	Solar	49.6
Sapony Creek Solar	305574	1SAPCRKSOLGL0.6300	PV	Solar	23.7	Solar	23.7
Shoe Creek Solar	305634	1SHOECKSOLGL0.3850	PV	Solar	65.36	Solar	65.36
Shorthorn Solar	305344	1SHORTHSOLGL0.6600	PV	N/A	N/A	Solar	60.67
Sleepy Creek Solar	304834	1SLEPCRSOLGL0.6300	PV	N/A	81.32	Solar	81.32
Sneedsboro Solar	305404	1SNEEDSOL1GL0.3570	PV	Solar	38.8	Solar	38.8
Sneedsboro Solar	305407	1SNEEDSOL2GL0.3570	PV	Solar	40.9	Solar	40.9
Stevens Mill Solar	305614	1STVNMLSOLGL0.6300	PV	N/A	81.23	Solar	81.23
Sutton County Plant	304919	1SUTTONCT4 13.800	4	Natural Gas	42	Natural Gas	42
Sutton County Plant	304920	1SUTTONCT5 13.800	5	Natural Gas	42	Natural Gas	42
Sutton County Plant	305911	1SUT CC 1A 16.500	1A	Natural Gas	173	Natural Gas	173
Sutton County Plant	305912	1SUT CC 1B 16.500	1B	Natural Gas	173	Natural Gas	173
Sutton County Plant	305913	1SUT CC ST 21.000	ST	Natural Gas	268	Natural Gas	268
Sycamore Creek Solar	305894	1SYCAMRSOLGL0.6300	PV	Solar	49.4	Solar	49.4
Tillery Hydro	304888	1TILLERY #1 13.800	1	Hydro	21	Hydro	21

Summer Peak 2027 & 20	35 Regional SEF	RTP V3 Models		20)27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Tillery Hydro	304889	1TILLERY #2 13.800	1	Hydro	18	Hydro	18
Tillery Hydro	304890	1TILLERY #3 13.800	1	Hydro	27.28	Hydro	27.28
Tillery Hydro	304891	1TILLERY #4 13.800	1	Hydro	25	Hydro	25
Trent River Solar	305544	1TRENTRSOLGL0.6300	PV	Solar	79.9	Solar	79.9
Turnbull Creek Solar	305534	1TURNBLSOLGL0.5500	PV	Solar	51	Solar	51
Warsaw Solar	305903	1WARSWSOL1GL0.3600	PV	Solar	40.2	Solar	40.2
Warsaw Solar	305906	1WARSWSOL2GL0.3600	PV	Solar	25.6	Solar	25.6
Warsaw Surplus Battery	305908	1WARSWSOL3GL0.6900	ВТ	N/A	15.11	Battery	15.11
Warsaw Surplus Battery	305910	1WARSWSOL4GL0.6900	ВТ	N/A	15.11	Battery	15.11
Wayne County Plant	304956	1WAYNE CO#1018.000	10	Natural Gas	169	Natural Gas	169
Wayne County Plant	304957	1WAYNE CO#1118.000	11	Natural Gas	174	Natural Gas	174
Wayne County Plant	304958	1WAYNE CO#1218.000	12	Natural Gas	164	Natural Gas	164
Wayne County Plant	304959	1WAYNE CO#1318.000	13	Natural Gas	162	Natural Gas	162
Wayne County Plant	304960	1WAYNE CO#1418.000	14	Natural Gas	153	Natural Gas	153
Weatherspoon CT	304924	1WSPN IC#1 13.800	Α	Natural Gas	31	Natural Gas	31
Weatherspoon CT	304925	1WSPN IC#2 13.800	Α	Natural Gas	31	Natural Gas	31
Weatherspoon CT	304927	1WSPN IC#3 13.800	Α	Natural Gas	32	Natural Gas	32
Weatherspoon CT	304928	1WSPN IC#4 13.800	Α	Natural Gas	30	Natural Gas	30
Willard Solar	305474	1WILARDSOLGL0.6000	PV	Solar	34.7	Solar	34.7

IX. Appendix 4: Duke Progress West BAA

The following information provides a more granular overview of the Duke Progress West BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A4.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Duke Progress West BAA)

Duke Progress West BAA	100-120	121-150	151-199	200-299	300-399	400-550
Duke Progress West DAA	kV	kV	kV	kV	kV	kV
Transmission lines – New (Circuit Mi.)	2.2					
Transmission Lines – Uprates ¹ (Circuit Mi.)						
Transformers ² – New						
Transformers ² – Replacements						

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A4.2: Interface commitments¹ modeled in the SERTP Summer Peak models – Duke Progress West BAA

То	2027	2030	2035
Duke Progress East	0	0	0
Duke Carolinas	0	0	0
SC	-22	-22	-22
TVA	-14	-14	-14
Total	-36	-36	-36

¹ A positive number represents a net export from the Duke Progress West BAA.

² The voltages shown represent the operating voltages on the high side terminals of the transformer.

A detailed listing of the changes in generation assumptions within the Duke Progress West BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A4.3 below. Table A4.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A4.5 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow model.

Table A4.3: Changes in Generation Assumptions Based Upon LSEs – Duke Progress West BAA

SITE	FUEL TYPE		2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
				None								
Cable A4.4: Generation A	Assumptions Based Upo	on Expect	ted Long	g-term, F	Firm Po	oint-to-l	Point Cor	nmitmei	nts – Du	ke Prog	ress Wes	st BAA

Table A4.5: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model - Duke Progress West BAA

Summer Peak 2027 & 20	035 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Asheville Plant	304858	1ASHVL #3CT 18.000	3	Natural Gas	160	Natural Gas	160
Asheville Plant	304859	1ASHVL #4CT 18.000	4	Natural Gas	160	Natural Gas	160
Asheville Plant	304875	1ASHVCC1CT5 18.000	5	Natural Gas	163	Natural Gas	163
Asheville Plant	304876	1ASHVCC1ST6 13.800	6	Natural Gas	85	Natural Gas	85
Asheville Plant	304877	1ASHVCC2CT7 18.000	7	Natural Gas	161	Natural Gas	161
Asheville Plant	304878	1ASHVCC2ST8 13.800	8	Natural Gas	85	Natural Gas	85
Dist. Biogas	304759	3LEICESTER 115.00	BG	Biogas	1.415	Biogas	1.415
Dist. Solar	304743	3CANTON115 T115.00	PV	Solar	2.106	Solar	2.106
Dist. Solar	304759	3LEICESTER 115.00	PV	Solar	4.829	Solar	4.829
Dist. Solar	304764	3MONTE VISTA115.00	PV	Solar	1.074	Solar	1.074
Dist. Solar	304766	3ELK MOUNTAI115.00	PV	Solar	6.106	Solar	6.106
Dist. Solar	304770	3BEAVERDAM 115.00	PV	Solar	1.297	Solar	1.297
Dist. Solar	304771	3WEAVERVILLE115.00	PV	Solar	1.369	Solar	1.369

Summer Peak 2027 & 20	35 Regional SERT	P V3 Models		20	027	20	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Dist. Solar	304772	3BARNARDSVIL115.00	HY	Hydro	1	Hydro	1
Dist. Solar	304783	1MARSHALL 22.860	PV	Solar	6.361	Solar	6.361
Dist. Solar	304790	3VANDERBLT T115.00	PV	Solar		Solar	2.332
Dist. Solar	304791	3WESTASHEV T115.00	PV	Solar	4.637	Solar	4.637
Dist. Solar	304798	3ASH PATTON 115.00	PV	Solar	2.332	Solar	
Dist. Solar	304804	3SKYLAND 115.00	PV	Solar	1.321	Solar	1.321
Dist. Solar	304806	30TEEN SS T115.00	PV	Solar	1.179	Solar	1.179
Dist. Solar	304818	3BALDWIN 115.00	PV	Solar	1.917	Solar	1.917
Elk Mountain Battery	304766	3ELK MOUNTAI115.00	ВТ	Battery	5	Battery	5
Elk Mountain Hydro	304766	3ELK MOUNTAI115.00	HY	Hydro	2.5	Hydro	2.5
Marshall Hydro	304856	1MARSHAL 1&24.1600	1	Hydro	2	Hydro	2
Marshall Hydro	304856	1MARSHAL 1&24.1600	2	Hydro	2	Hydro	2
Rock Hill Battery	304805	3ASH ROCK HI115.00	ВТ	Battery	8.8	Battery	8.8
Walters Hydro	304853	1WALTERS #1 13.800	1	Hydro	36	Hydro	36
Walters Hydro	304854	1WALTERS #2 13.800	1	Hydro	40	Hydro	40
Walters Hydro	304855	1WALTERS #3 13.800	1	Hydro	36	Hydro	36

X. Appendix 5: LG&E/KU BAA

The following information provides a more granular overview of the LG&E/KU BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A5.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (LG&E/KU BAA)

LG&E/KU BAA	100-120 kV	121-150 kV	151-199 kV	200-299 kV	300-399 kV	400-550 kV
Transmission lines – New (Circuit Mi.)						
Transmission Lines – Uprates ¹ (Circuit Mi.)		4.08	2.94			
Transformers ² – New						
Transformers ² – Replacements						

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A5.2: Interface commitments¹ modeled in the SERTP Summer Peak models – LG&E/KU BAA

То	2027	2030	2035
PJM	729.8	729.8	729.8
OVEC	-179	-179	-179
MISO	-247.8	-249	-250.2
Owensboro Municipal	0	0	0
TVA	-3	-3	-3
Total	300	298.8	297.6

¹ A positive number represents a net export from the LG&E/KU BAA.

² The voltages shown represent the operating voltages on the high side terminals of the transformer.

A detailed listing of the changes in generation assumptions within the LG&E/KU BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A5.3 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2025 series set of SERTP power flow models is provided below while Table A5.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A5.5 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow model.

Table A5.3: Changes in Generation Assumptions Based Upon LSEs - LG&E/KU BAA

	<u>L</u>	L .		/							
SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
GI-2019-025	Solar	100	100	100	100	100	100	100	100	100	100
GI-2019-029	Solar		100	100	100	100	100	100	100	100	100
GI-2022-003	Natural Gas		661	661	661	661	661	661	661	661	661
Mill Creek 2	Coal	301									

Table A5.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – LG&E/KU BAA

Tubic Tib. II delici diloli Tibbulli per	one Basea	эрон шир	eccea Bon	5 (01111) 1 1	TITE TOTTLE	to romit c	,0111111111	птев вае	th/ HO BH	
SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Trimble County	324	324	324	324	324	324	324	324	324	324

Table A5.5: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model – LG&E/KU BAA

Summer Peak 2027	Summer Peak 2027 & 2035 Regional SERTP V3 Models)27	20	35
Plant	Bus Number	Bus Name		Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Brown	324002	1BROWN 3	24.000	3	Coal	455	Coal	455
Brown	324003	1BROWN 5	13.800	5	Natural Gas	131	Natural Gas	131
Brown	324004	1BROWN 6	18.000	6	Natural Gas	147	Natural Gas	147
Brown	324005	1BROWN 7	18.000	7	Natural Gas	147	Natural Gas	147
Brown	324006	1BROWN 8	13.800	8	Natural Gas	122	Natural Gas	122
Brown	324007	1BROWN 9	13.800	9	Natural Gas	122	Natural Gas	122

Summer Peak 2027 & 20	035 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Brown	324008	1BROWN 10 13.800	10	Natural Gas	122	Natural Gas	122
Brown	324009	1BROWN 11 13.800	11	Natural Gas	122	Natural Gas	122
Brown	325012	1BROWN SOLAR13.200	S1	Solar	8	Solar	8
Buckner	324044	1BLUEGRASS 118.000	1	Natural Gas	166	Natural Gas	166
Buckner	324045	1BLUEGRASS 218.000	2	Natural Gas	166	Natural Gas	166
Buckner	324046	1BLUEGRASS 318.000	3	Natural Gas	166	Natural Gas	166
Cane Run	325093	1CANERUN7CT118.000	71	Natural Gas	236	Natural Gas	236
Cane Run	325094	1CANERUN7CT218.000	72	Natural Gas	236	Natural Gas	236
Cane Run	325095	1CANERUN7ST 18.000	7 S	Natural Gas	233	Natural Gas	233
Dix Dam	324014	1DIX DAM 1 13.200	1	Hydro	11.2	Hydro	11.2
Dix Dam	324015	1DIX DAM 2 13.200	2	Hydro	11.2	Hydro	11.2
Dix Dam	324016	1DIX DAM 3 13.200	3	Hydro	11.2	Hydro	11.2
EKPC Office	326541	2EKPC OFFICE69.000	P1	Natural Gas	6.8	Natural Gas	6.8
Ghent	324017	1GHENT 1 18.000	1	Coal	520	Coal	520
Ghent	324018	1GHENT 2 22.000	2	Coal	520	Coal	520
Ghent	324019	1GHENT 3 22.000	3	Coal	530	Coal	530
Ghent	324020	1GHENT 4 22.000	4	Coal	525	Coal	525
GI2017-002	325029	1G2017-002G10.6900	1	Solar	57.3	Solar	57.3
GI2017-002	325030	1G2017-002G20.6300	1	Solar	13.3	Solar	13.3
GI2019-004	325090	1G2019-004GS0.6450	1	Solar	0	Solar	0
GI2019-025	325185	1GI2019-025G0.6000	1	Solar	80	Solar	80
GI2020-001	325180	1GI2020-001G0.6000	1	Solar	0	Solar	0
GI2022-003	325214	1GI2022-003G25.000	1	Natural Gas	661	Natural Gas	661
Haefling	324023	1HAEFLING 13.800	1	Natural Gas	12	Natural Gas	12
Haefling	324023	1HAEFLING 13.800	2	Natural Gas	12	Natural Gas	12
Lock	324052	1LOCK 7 2.4000	1	Hydro	2	Hydro	2
Mill Creek	324024	1MILL CRK 1 22.000	1	Coal	0	Coal	0
Mill Creek	324025	1MILL CRK 2 22.000	2	Coal	0	Coal	0
Mill Creek	324026	1MILL CRK 3 22.000	3	Coal	422	Coal	422

Summer Peak 2027 &	2035 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Mill Creek	324027	1MILL CRK 4 22.000	4	Coal	517	Coal	517
Ohio Falls	324234	10HIO FALL 114.000	1	Hydro	9.375	Hydro	9.375
Ohio Falls	324234	10HIO FALL 114.000	2	Hydro	9.375	Hydro	9.375
Ohio Falls	324234	10HIO FALL 114.000	3	Hydro	9.375	Hydro	9.375
Ohio Falls	324234	10HIO FALL 114.000	4	Hydro	9.375	Hydro	9.375
Ohio Falls	324235	10HIO FALL 214.000	5	Hydro	9.375	Hydro	9.375
Ohio Falls	324235	10HIO FALL 214.000	6	Hydro	9.375	Hydro	9.375
Ohio Falls	324235	10HIO FALL 214.000	7	Hydro	9.375	Hydro	9.375
Ohio Falls	324235	10HIO FALL 214.000	8	Hydro	9.375	Hydro	9.375
Paddys Run	324031	1PADDY RN 1316.000	13	Natural Gas	148	Natural Gas	148
Paddys Run	326515	1PADDY RN 1214.000	12	Natural Gas	23	Natural Gas	23
Paducah	324697	1KMPA PAD2 13.800	2	Natural Gas	54	Natural Gas	54
Paducah	324933	1KMPA PAD1 13.800	1	Natural Gas	54	Natural Gas	54
Paris	324677	2PARIS 12 69.000	1	Natural Gas	10	Natural Gas	10
Trimble County	324034	1TRIM CO 1 22.000	1	Coal	530	Coal	530
Trimble County	324035	1TRIM CO 2 24.000	2	Coal	781	Coal	781
Trimble County	324036	1TRIM CO 5 18.000	5	Natural Gas	160	Natural Gas	160
Trimble County	324037	1TRIM CO 6 18.000	6	Natural Gas	160	Natural Gas	160
Trimble County	324038	1TRIM CO 7 18.000	7	Natural Gas	160	Natural Gas	160
Trimble County	324039	1TRIM CO 8 18.000	8	Natural Gas	160	Natural Gas	160
Trimble County	324040	1TRIM CO 9 18.000	9	Natural Gas	160	Natural Gas	160
Trimble County	324041	1TRIM CO 10 18.000	10	Natural Gas	160	Natural Gas	160

XI. Appendix 6: Southern BAA

The following information provides a more granular overview of the Southern BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A6.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (Southern BAA)

Southern BAA	100-120 kV	121-150 kV	151-199 kV	200-299 kV	300-399 kV	400-550 kV
Transmission lines – New (Circuit Mi.)	118.5			280.0		589.0
Transmission Lines – Uprates ¹ (Circuit Mi.)	1122.6			700.6		
Transformers ² – New				6		4
Transformers ² – Replacements				9		2
Power Flow Control Devices	1			8		
Static Compensators						

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

Table A6.2: Interface commitments¹ modeled in the SERTP Summer Peak models – Southern BAA

То	2027	2030	2035
Duke Carolinas	0	0	0
DESC	0	0	0
SCPSA	200	717	492
TVA	398	-64	-61
SEPA	-625	-625	-625
MISO	-203	-261	-367
FRCC	371	167	399
Total	141	-66	-162

A positive number represents a net export from the Southern BAA.

 $^{^{2}}$ The voltages shown represent the operating voltages on the high side terminals of the transformer.

A detailed listing of the changes in generation assumptions within the Southern BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Tables A6.3 through A6.6 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2025 series set of SERTP power flow models is provided below, while Table A6.7 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A6.8 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow model.

Table A6.3: Changes in Generation Assumptions Based Upon LSEs – Southern Company

SITE FUEL TYPE 2026 2027 2028 2029 2030 2031 Alligator Creek Solar 80 80 80 80 80 80 Amber Meadow Solar Solar 225 225 225 Atmore Solar Solar 225 225 225 Atmore Solar Solar 80 80 80 80 80 Beaver Creek Solar Solar 183 184 184 1848 <	80 225 80 183 500	2033 80 225 80 183	80 225 80	2035 80 225 80
Amber Meadow Solar Solar 225 225 225 Atmore Solar Solar 80 80 80 80 Beaver Creek Solar Solar 183 183 Bowen 1 & 2 BESS Battery 250 500 500 Bowen 7 & 8 Natural Gas 1488 1488 Clearview Solar Solar 200 200 200 200 Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1847 1897 Foley Solar Solar 80 80 </th <th>225 80 183</th> <th>225 80</th> <th>225 80</th> <th>225</th>	225 80 183	225 80	225 80	225
Atmore Solar Solar 80 80 80 80 Beaver Creek Solar Solar 183 183 Bowen 1 & 2 BESS Battery 250 500 500 Bowen 7 & 8 Natural Gas 1488 1488 Clearview Solar Solar 200 200 200 200 Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 1 Coal 921 0	80 183	80	80	
Beaver Creek Solar Solar 183 183 183 Bowen 1 & 2 BESS Battery 250 500 500 Bowen 7 & 8 Natural Gas 1488 1488 Clearview Solar Solar 200 200 200 200 Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0 <td>183</td> <td></td> <td></td> <td>80</td>	183			80
Bowen 1 & 2 BESS Battery 250 500 500 Bowen 7 & 8 Natural Gas 1488 1488 Clearview Solar Solar 200 200 200 200 Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 1 Coal 921 0		183	4.00	
Bowen 7 & 8 Natural Gas 1488 1488 Clearview Solar Solar 200 200 200 200 Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0	500		183	183
Clearview Solar Solar 200 200 200 200 Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0		500	500	500
Drawhorn Solar Solar 80 80 80 80 Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0	1488	1488	1488	1488
Dry Creek Solar Solar 200 200 200 Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0	200	200	200	200
Fall Line Solar Solar 20 20 20 Farley 1 & 2 Nuclear 1827 1834 1847 1847 1897 Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0	80	80	80	80
Farley 1 & 2 Nuclear 1827 1834 1847 1847 1847 1897 Foley Solar Solar 80 80 80 80 80 Gaston 5 ¹ Coal 921 0	200	200	200	200
Foley Solar Solar 80 80 80 80 Gaston 5 ¹ Coal 921 0	20	20	20	20
Gaston 5 ¹ Coal 921 0	1947	1947	1947	1947
	80	80	80	80
Gaston 5 ¹ Natural Gas 946 946 946 946 946				
	946	946	946	946
Goodspsprings BESS Battery 150 150 150 150 150	150	150	150	150
Hammond BESS Battery 57.5 57.5 57.5 250	250	250	250	250
Hatch 1 & 2 Nuclear 1770 1770 1845 1908 1908	1908	1908	1908	1908
Hickory Solar 268 268 268 268	268	268	268	268
Hopehull Solar 80 80	80	80	80	80
Laurens County Solar/BESS Solar + Storage 200 200 200	200	200	200	200

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Lindsay Hill ²	Natural Gas				850	934	934	934	934	934	934
Mcgrau Ford BESS	Battery	265	530	530	530	530	530	530	530	530	530
Mcintosh 10 & 11	Natural Gas	1359	1359	1359	1444	1444	1444	1444	1444	1444	1444
Mcintosh 12	Natural Gas						744	744	744	744	744
Mcintosh BESS	Battery					250	250	250	250	250	250
Mcintosh CTs (1-8)	Natural Gas	658	658	666	709	726	726	726	726	726	726
Metter Solar	Solar	80	80	80	80	80	80	80	80	80	80
Mitchell Solar/BESS	Solar + Storage				150	150	150	150	150	150	150
Notch 4 & 5	Solar		160	160	160	160	160	160	160	160	160
Oakman Solar 1 & 2	Solar				162.5	162.5	162.5	162.5	162.5	162.5	162.5
Old Hayneville Solar	Solar		80	80	80	80	80	80	80	80	80
Ratcliffe	Natural Gas	723	723	723	747	747	747	747	747	747	747
Sandersville Solar	Solar			50	50	50	50	50	50	50	50
Saturn Solar 1 & 2	Solar		160	160	160	160	160	160	160	160	160
Shamrock Solar	Solar				225	225	225	225	225	225	225
Shortleaf Solar	Solar				200	200	200	200	200	200	200
Shubuta Solar	Solar				156	156	156	156	156	156	156
South Hall BESS	Battery				250	250	250	250	250	250	250
Steamroller Solar	Solar				150	170	170	170	170	170	170
Stockton Solar 1 & 2	Solar					260	260	260	260	260	260
Thomson BESS	Battery					500	500	500	500	500	500
Twiggs BESS	Battery			200	200	200	200	200	200	200	200
Vogtle 1 & 2	Nuclear	2319	2319	2325	2327	2327	2427	2427	2427	2427	2427
Walker Springs 1 & 2	Solar	160	160	160	160	160	160	160	160	160	160
Wansley 10 & 11	Natural Gas					1488	1488	1488	1488	1488	1488
Wansley BESS	Battery				500	500	500	500	500	500	500
Wilsonville Solar	Solar				200	200	200	200	200	200	200
Yates 1 & 2 BESS	Battery				570	570	570	570	570	570	570
Yates 8, 9, & 10	Natural Gas		882	1323	1323	1323	1323	1323	1323	1323	1323

¹ Plant conversion from coal to gas.

² Third-party delivery service ending, transitioning generation to a Designated Network Resource.

Table A6.4: Changes in Generation Assumptions Based Upon LSEs – GTC

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Big Smarr 1 & 2	Natural Gas				1543	1543	1543	1543	1543	1543	1543
East Berlin	Solar	22	22	22	22	22	22	22	22	22	22
SR Bacon	Solar			100	200	300	300	300	300	300	300
SR Rochelle	Solar		90	140	140	140	140	140	140	140	140
Talbot 7	Natural Gas				250	250	250	250	250	250	250

Table A6.5: Changes in Generation Assumptions Based Upon LSEs – MEAG

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Pineview Solar Project	Solar	80	80	80	80	80	80	80	80	80	80
Wansley Provisional Unit	Natural Gas					779	779	779	779	779	779

Table A6.6: Changes in Generation Assumptions Based Upon LSEs – Dalton

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
			None								

Table A6.7: Changes in Generation Assumptions Based Upon LSEs - PowerSouth

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Lowman Unit 3 CT	Natural Gas				420	420	420	420	420	420	420

Table A6.8: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – Southern Company

SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Dahlberg	44	44	44	44	44	44	44	44	44	44
Hillabee	210	210	210	210	210	210	210	210	210	210

SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Lindsay Hill ¹	220	220	220	0						
Miller ²	1500	1233	1500	1500	1500	1500	1500	1500	1500	1500
Sandersville		267		292	292	292	292	292	292	292
Scherer	210	210	210	0						
Vogtle	206	206	206	206	206	206	206	206	206	206
Wansley ²	271	271	71	71	71	71	71	71	71	71

¹ Third-party delivery service ending, transitioning generation to a Designated Network Resource.

Table A6.9: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model - Southern BAA

Summer Peak 2027 & 20	035 Regional SER	TP V3 Models		20	027	2035		
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)	
Addison	383901	2ADDISON 1 18.000	1	Natural Gas	148.5	Natural Gas	148.5	
Addison	383902	2ADDISON 2 18.000	2	Natural Gas	149	Natural Gas	149	
Addison	383903	2ADDISON 3 18.000	3	Natural Gas	148.5	Natural Gas	148.5	
Addison	383904	2ADDISON 4 18.000	4	Natural Gas	145.9	Natural Gas	145.9	
Alabama Creek Solar ¹	386019	2ALA CK SLR 34.500	S1	Solar	0	Solar	0	
Albany Green Energy Biomass	383480	2ALB GRN NRG13.800	1	Biomass	50	Biomass	50	
Allatoona Dam	383506	2ALLA DAM 13.800	H1	Hydro	72	Hydro	72	
Alligator Solar	383313	2ALIGATOR PV34.500	S1	Solar	80	Solar	80	
Amber Meadow Solar	383347	2AMBMEADSLR 34.500	S1	N/A	N/A	Solar	225	
AMEA Sylacauga	386036	2AMEA CT1 13.800	1	Natural Gas	47.5	Natural Gas	47.5	
AMEA Sylacauga	386037	2AMEA CT2 13.800	2	Natural Gas	47.5	Natural Gas	47.5	
Americus BESS ¹	383460	2AMER BESS 34.500	B1	Battery	0	Battery	0	
Americus Solar ¹	383461	2AMERICUS 1 34.500	S1	Solar	0	Solar	0	
Americus Solar ¹	383462	2AMERICUS 2 34.500	S2	Solar	0	Solar	0	
Americus Solar ¹	383463	2AMERICUS 3 34.500	S3	Solar	0	Solar	0	
Anniston Army Solar	386035	3ANAD SLR 115.00	S1	Solar	11	Solar	11	

² Third-party delivery service, sourcing from a Designated Network Resource, will likely require a redirect to new source.

Summer Peak 2027 & 2	2035 Regional SER	TP V3 Models		2	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Arlington Solar	383434	2SR ARLINGTN34.500	S1	Solar	123	Solar	123
Baker Creek Solar ¹	386018	2BAKR CK SLR34.500	S1	Solar	0	Solar	0
Bankhead Dam	384357	2BANK GEN 13.800	H1	Hydro	52	Hydro	52
Barry	386471	2BARRY 1 18.000	1	Natural Gas	80	Natural Gas	80
Barry	386472	2BARRY 2 18.000	2	Natural Gas	80	Natural Gas	80
Barry	386474	2BARRY 4 22.000	4	Natural Gas	368	Natural Gas	368
Barry	386475	2BARRY 5 26.000	5	Coal	785	Coal	785
Barry	386476	2BARRY 6ST 18.000	6	Natural Gas	206.6	Natural Gas	206.6
Barry	386477	2BARRY 6A 18.000	6A	Natural Gas	185.6	Natural Gas	185.6
Barry	386478	2BARRY 6B 18.000	6B	Natural Gas	186	Natural Gas	186
Barry	386479	2BARRY 7ST 18.000	7	Natural Gas	204.7	Natural Gas	204.7
Barry	386480	2BARRY 7A 18.000	7A	Natural Gas	183.6	Natural Gas	183.6
Barry	386481	2BARRY 7B 18.000	7B	Natural Gas	187.9	Natural Gas	187.9
Barry	386482	2BARRY 8ST 21.000	8	Natural Gas	287.7	Natural Gas	287.7
Barry	386483	2BARRY 8A 19.000	8A	Natural Gas	399	Natural Gas	399
Bartletts Ferry Dam	383514	2BARTLFY1 12.000	H1	Hydro	15.2	Hydro	15.2
Bartletts Ferry Dam	383515	2BARTLFY2 12.000	H2	Hydro	15.2	Hydro	15.2
Bartletts Ferry Dam	383516	2BARTLFY3 12.000	Н3	Hydro	15.2	Hydro	15.2
Bartletts Ferry Dam	383517	2BARTLFY4 6.9000	H4	Hydro	20.2	Hydro	20.2
Bartletts Ferry Dam	383518	2BARTLFY6 13.800	H5	Hydro	54.4	Hydro	54.4
Bartletts Ferry Dam	383518	2BARTLFY6 13.800	Н6	Hydro	54.4	Hydro	54.4
Beaver Creek Solar	383346	2BEAVERCKSLR34.500	S1	N/A	N/A	Solar	183
Big Smarr	383723	2SMARR 1ST 18.000	1	N/A	N/A	Natural Gas	196.9
Big Smarr	383724	2SMARR 1A 18.000	1A	N/A	N/A	Natural Gas	403.1
Big Smarr	383726	2SMARR 2ST 18.000	2	N/A	N/A	Natural Gas	196.9
Big Smarr	383727	2SMARR 2A 18.000	2A	N/A	N/A	Natural Gas	403.1
Bird Dog Solar	383455	2BIRD DOG PV34.500	S1	Solar	40	Solar	40
Black Bear Solar	386077	2BLKBRSLRPV10.6600	S1	Solar	4.5	Solar	4.5
Black Bear Solar	386078	2BLKBRSLRPV20.6600	S1	Solar	18.2	Solar	18.2

Summer Peak 2027 &	2035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Black Bear Solar	386079	2BLKBRSLRPV30.6600	S1	Solar	34.1	Solar	34.1
Black Bear Solar	386080	2BLKBRSLRPV40.6600	S1	Solar	45.4	Solar	45.4
Blackwater Solar	383466	2BLCKWTR SLR34.500	S1	Solar	80	Solar	80
Bouldin Dam	386581	2BOULD1GN 13.800	H1	Hydro	75.7	Hydro	75.7
Bouldin Dam	386582	2BOULD2GN 13.800	H2	Hydro	75.3	Hydro	75.3
Bouldin Dam	386583	2BOULD3GN 13.800	НЗ	Hydro	75.3	Hydro	75.3
Boulevard	389017	2BLVD1 13.800	1	Oil	14	Oil	14
Bowen	383250	2BOWEN 7 ST 21.000	7	N/A	N/A	Natural Gas	330
Bowen	383251	2BOWEN 7 CTA23.500	7A	N/A	N/A	Natural Gas	414
Bowen	383252	2BOWEN 8 ST 21.000	8	N/A	N/A	Natural Gas	330
Bowen	383253	2BOWEN 8 CTA23.500	8A	N/A	N/A	Natural Gas	414
Bowen	383841	2BOWEN 1 25.000	1	Coal	718	Coal	718
Bowen	383842	2BOWEN 2 25.000	2	Coal	709	Coal	709
Bowen	383843	2BOWEN 3 18.000	3	Coal	915.5	Coal	915.5
Bowen	383844	2BOWEN 4 18.000	4	Coal	915.5	Coal	915.5
Bowen BESS	383282	2BOWBESS1LS134.500	B1	N/A	N/A	Battery	250
Bowen BESS	383283	2BOWBESS1LS234.500	B1	N/A	N/A	Battery	250
Buford Dam 1	383509	2BUF DAM 1+313.800	H1	Hydro	60.1	Hydro	60.1
Buford Dam 2	383510	2BUF DAM 2 13.800	H2	Hydro	60.1	Hydro	60.1
Buford Dam 3	383509	2BUF DAM 1+313.800	НЗ	Hydro	6.8	Hydro	6.8
Bulldog Solar	383456	2BULLDOG PV 34.500	S1	Solar	80	Solar	80
Bulter Solar	383406	2BUTLER SLR 34.500	S1	Solar	100	Solar	100
Calhoun	383680	2CALHOUN GEN13.800	4	Natural Gas	0	Natural Gas	0
Calhoun	386061	2CALHOUNCT1 18.000	1	Natural Gas	161.4	Natural Gas	161.4
Calhoun	386062	2CALHOUNCT2 18.000	2	Natural Gas	161.4	Natural Gas	161.4
Calhoun	386063	2CALHOUNCT3 18.000	3	Natural Gas	161.4	Natural Gas	161.4
Calhoun	386064	2CALHOUNCT4 18.000	4	Natural Gas	161.4	Natural Gas	161.4
Camilla Solar	383425	6CAMILLA SLR230.00	S1	Solar	16	Solar	16
Cane Creek Solar	386842	2CANE CK SL 34.500	S1	Solar	78.5	Solar	78.5

Summer Peak 2027 & 20	035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Carters Dam	383502	2CARTERSDAM113.800	H1	Hydro	148	Hydro	148
Carters Dam	383503	2CARTERSDAM213.800	H2	Hydro	148	Hydro	148
Carters Dam	383504	2CARTERSDAM313.800	Р3	Pumped Hydro	148	Pumped Hydro	148
Carters Dam	383505	2CARTERSDAM413.800	P4	Pumped Hydro	148	Pumped Hydro	148
Cedar Springs Solar	383474	2SR CEDAR SP34.500	S1	Solar	79.1	Solar	79.1
Central Alabama	386427	2CENTAL 2ST 22.000	2	Natural Gas	404	Natural Gas	404
Central Alabama	386428	2CENTAL 2A 18.000	2A	Natural Gas	182.33	Natural Gas	182.33
Central Alabama	386429	2CENTAL 2B 18.000	2B	Natural Gas	182.33	Natural Gas	182.33
Central Alabama	386430	2CENTAL 2C 18.000	2C	Natural Gas	182.34	Natural Gas	182.34
Chattahoochee Energy	383632	2CHAT EN 1ST16.000	1	Natural Gas	164.5	Natural Gas	164.5
Chattahoochee Energy	383633	2CHAT EN 1A 16.000	1A	Natural Gas	160	Natural Gas	160
Chattahoochee Energy	383634	2CHAT EN 1B 16.000	1B	Natural Gas	160	Natural Gas	160
Chevron	386831	2CHEVRON1 13.200	1	Natural Gas	15	Natural Gas	15
Chevron	386832	2CHEVRON2 13.200	2	Natural Gas	15	Natural Gas	15
Chevron	386833	2CHEVRON3 13.200	3	Natural Gas	16	Natural Gas	16
Chevron	386834	2CHEVRON4 13.200	4	Natural Gas	16	Natural Gas	16
Chevron	386835	2CHEVRON5 13.800	5	Natural Gas	70	Natural Gas	70
Clay Solar	383438	2SR CLAY 34.500	S1	Solar	120.2	Solar	120.2
Clearview Solar	386006	2CLEARVW SLR34.500	S1	N/A	N/A	Solar	200
Cool Springs Solar	383452	2COOL SPR PV34.500	S1	Solar	213	Solar	213
Dahlberg	383661	2DAHLBERG 1 13.800	1	Natural Gas	74.8	Natural Gas	74.8
Dahlberg	383662	2DAHLBERG 2 13.800	2	Natural Gas	74	Natural Gas	74
Dahlberg	383663	2DAHLBERG 3 13.800	3	Natural Gas	74.7	Natural Gas	74.7
Dahlberg	383664	2DAHLBERG 4 13.800	4	Natural Gas	73.5	Natural Gas	73.5
Dahlberg	383665	2DAHLBERG 5 13.800	5	Natural Gas	74.7	Natural Gas	74.7
Dahlberg	383666	2DAHLBERG 6 13.800	6	Natural Gas	74.9	Natural Gas	74.9
Dahlberg	383667	2DAHLBERG 7 13.800	7	Natural Gas	75	Natural Gas	75

Summer Peak 2027 & 203	35 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Dahlberg	383668	2DAHLBERG 8 13.800	8	Natural Gas	74	Natural Gas	74
Dahlberg	383669	2DAHLBERG 9 13.800	9	Natural Gas	74.8	Natural Gas	74.8
Dahlberg	383670	2DAHLBERG 1013.800	10	Natural Gas	75.2	Natural Gas	75.2
Dale County Solar ¹	386029	2DALE CTY SL34.500	S1	N/A	N/A	Solar	0
Daniel	386871	2DANIEL 1 18.000	1	Coal	0	Coal	0
Daniel	386872	2DANIEL 2 18.000	2	Coal	510	Coal	510
Daniel	386873	2DANIEL 3ST 18.000	3	Natural Gas	198	Natural Gas	198
Daniel	386874	2DANIEL 3A 18.000	3A	Natural Gas	190.2	Natural Gas	190.2
Daniel	386875	2DANIEL 3B 18.000	3B	Natural Gas	190.2	Natural Gas	190.2
Daniel	386876	2DANIEL 4ST 18.000	4	Natural Gas	204.6	Natural Gas	204.6
Daniel	386877	2DANIEL 4A 18.000	4A	Natural Gas	196.7	Natural Gas	196.7
Daniel	386878	2DANIEL 4B 18.000	4B	Natural Gas	198.4	Natural Gas	198.4
Decatur County Industrial	381031	3DEC CO IND 115.00	S1	Solar	19	Solar	19
Decatur Solar	383303	2DECATUR SLR34.500	S1	Solar	200	Solar	200
Decatur Solar	383401	2DEC PKY SLR34.500	S1	Solar	79.9	Solar	79.9
Desoto Solar	383475	2SR DESOTO 34.500	S1	Solar	263	Solar	263
Dodge Solar ¹	383328	2DODGE SLR 34.500	S1	Solar	0	Solar	0
Dogwood BESS ¹	383351	2DOGWOODBESS34.500	B1	N/A	N/A	Battery	0
Dothan Solar ¹	386014	2DOTHAN SLR 34.500	S1	N/A	N/A	Solar	0
Dougherty Solar	383433	2DOUGH PV 34.500	S1	Solar	130	Solar	130
Doyle	383871	2DOYLE 1 14.400	1	Natural Gas	56	Natural Gas	56
Doyle	383872	2DOYLE 2 13.800	2	Natural Gas	57	Natural Gas	57
Doyle	383873	2DOYLE 3 13.800	3	Natural Gas	57	Natural Gas	57
Doyle	383874	2DOYLE 4 13.800	4	Natural Gas	71.8	Natural Gas	71.8
Doyle	383875	2DOYLE 5 13.800	5	Natural Gas	71.7	Natural Gas	71.7
Drawhorn Solar	383323	2DRAWHRNLOW 34.500	S1	N/A	N/A	Solar	80
Dry Creek Solar	383339	2DRYCREEKSLR34.500	S1	N/A	N/A	Solar	200
Dublin Biomass 1	383787	2DUBLIN B1 12.500	1	Biomass	29	Biomass	29

Summer Peak 2027 &	2035 Regional SER	TP V3 Models		20	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
East Atmore Solar	386002	2ATMORESOLAR34.500	S1	Solar	80	Solar	80
East Berlin	381888	6E BERLIN 230.00	S1	Solar	22	Solar	22
Effingham	383867	2EFFHAM 1ST 18.000	1	Natural Gas	199	Natural Gas	199
Effingham	383868	2EFFHAM 1A 18.000	1A	Natural Gas	173	Natural Gas	173
Effingham	383869	2EFFHAM 1B 18.000	1B	Natural Gas	173	Natural Gas	173
Fall Line Solar	383408	2FALL LN SLR34.500	S1	N/A	N/A	Solar	20
Farley	386461	2FARLEY 1 22.000	N1	Nuclear	926.9	Nuclear	976.9
Farley	386462	2FARLEY 2 22.000	N2	Nuclear	907.1	Nuclear	969.9
Flint Biomass	383786	2FLINT BIO 13.800	1	Biomass	27	Biomass	27
Flint Biomass	383786	2FLINT BIO 13.800	2	Biomass	29.8	Biomass	29.8
Flint River Dam	383538	2FLINT HYDRO2.3000	H1	Hydro	6.4	Hydro	6.4
Foley Solar	386003	2FOLEYSOLAR 34.500	S1	Solar	80	Solar	80
Fort Benning Solar	383411	3BENNING SLR115.00	S1	Solar	30	Solar	30
Fort Rucker Solar	386034	3RUCKER SLR 115.00	S1	Solar	10.6	Solar	10.6
Fort Valley Solar	382323	3FT VALLEY 115.00	S1	Solar	10.7	Solar	10.7
Franklin	383671	2FRANKLIN1ST18.000	1	Natural Gas	221	Natural Gas	221
Franklin	383672	2FRANKLIN 1A18.000	1A	Natural Gas	187	Natural Gas	187
Franklin	383673	2FRANKLIN 1B18.000	1B	Natural Gas	187	Natural Gas	187
Franklin	383674	2FRANKLIN2ST21.000	2	Natural Gas	288.4	Natural Gas	288.4
Franklin	383675	2FRANKLIN 2A18.000	2A	Natural Gas	187	Natural Gas	187
Franklin	383676	2FRANKLIN 2B18.000	2B	Natural Gas	187	Natural Gas	187
Franklin	383677	2FRANKLIN3ST21.000	3	Natural Gas	291.7	Natural Gas	291.7
Franklin	383678	2FRANKLIN 3A18.000	3A	Natural Gas	183.3	Natural Gas	183.3
Franklin	383679	2FRANKLIN 3B18.000	3B	Natural Gas	183.3	Natural Gas	183.3
Gantt Hydro	317134	2GANTT GSU 2.3000	H1	Hydro	2.6	Hydro	2.6
Gaston	386411	2GASTON 1 15.000	1	Natural Gas	127	Natural Gas	127
Gaston	386411	2GASTON 1 15.000	1L	Natural Gas	127	Natural Gas	127
Gaston	386412	2GASTON 2 15.000	2	Natural Gas	128	Natural Gas	128
Gaston	386412	2GASTON 2 15.000	2L	Natural Gas	128	Natural Gas	128

Summer Peak 2027 &	2035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Gaston	386413	2GASTON 3 15.000	3	Natural Gas	127	Natural Gas	127
Gaston	386413	2GASTON 3 15.000	3L	Natural Gas	102	Natural Gas	102
Gaston	386414	2GASTON 4 15.000	4	Natural Gas	128	Natural Gas	128
Gaston	386414	2GASTON 4 15.000	4L	Natural Gas	102.6	Natural Gas	102.6
Gaston	386415	2GASTON 5 18.000	5	Natural Gas	946	Natural Gas	946
Gaston	386416	2GASTON A 13.800	Α	Natural Gas	16	Natural Gas	16
George Dam 1	383551	2GEORGE 1 13.800	H1	Hydro	40.5	Hydro	40.5
George Dam 2	383552	2GEORGE 2 13.800	H2	Hydro	40.5	Hydro	40.5
George Dam 3	383553	2GEORGE 3 13.800	Н3	Hydro	40.5	Hydro	40.5
George Dam 4	383554	2GEORGE 4 13.800	H4	Hydro	40.5	Hydro	40.5
Goat Rock Dam	383520	2GOATROCK 12.000	Н3	Hydro	5	Hydro	5
Goat Rock Dam	383520	2GOATROCK 12.000	H4	Hydro	5	Hydro	5
Goat Rock Dam	383520	2GOATROCK 12.000	H7	Hydro	9.3	Hydro	9.3
Goat Rock Dam	383520	2GOATROCK 12.000	Н8	Hydro	9.3	Hydro	9.3
Goat Rock Dam	383521	2GOATRK 56 4.2000	H5	Hydro	5	Hydro	5
Goat Rock Dam	383521	2GOATRK 56 4.2000	Н6	Hydro	5	Hydro	5
Goodsprings BESS	386026	2GOODSP BESS34.500	B1	Battery	150	Battery	150
Gordon Solar	383412	2GORDON SLR 34.500	S1	Solar	30	Solar	30
Greene County	386441	2GREENE CO 120.000	1	Natural Gas	257.8	Natural Gas	257.8
Greene County	386442	2GREENE CO 220.000	2	Natural Gas	258.3	Natural Gas	258.3
Greene County	386450	2GREENCOA 13.800	Α	Natural Gas	84	Natural Gas	84
Greene County	386451	2GREENCOB 13.800	В	Natural Gas	82	Natural Gas	82
Greene County	386452	2GREENCOC 13.800	С	Natural Gas	81	Natural Gas	81
Greene County	386453	2GREENCOD 13.800	D	Natural Gas	82	Natural Gas	82
Greene County	386454	2GREENCOE 13.800	Е	Natural Gas	81	Natural Gas	81
Greene County	386455	2GREENCOF 13.800	F	Natural Gas	80	Natural Gas	80
Greene County	386456	2GREENCOG 13.800	G	Natural Gas	83	Natural Gas	83
Greene County	386457	2GREENCOH 13.800	Н	Natural Gas	82	Natural Gas	82
Greene County	386458	2GREENCOI 13.800	1	Natural Gas	85	Natural Gas	85

Summer Peak 2027 &	2035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
GRP Franklin Bio	383481	2GRP FRK BIO13.800	1	Biomass	65	Biomass	65
GRP Madison Bio	383486	2GRP MAD BIO13.800	1	Biomass	65	Biomass	65
Hammond BESS	383325	2HAMBESSPH1 34.500	B1	Battery	57.5	Battery	57.5
Hammond BESS	383350	2HAMMBESSPH234.500	B1	N/A	N/A	Battery	192.5
Harris	386491	2HARRIS 1ST 21.000	1	Natural Gas	294	Natural Gas	294
Harris	386492	2HARRIS 1A 18.000	1A	Natural Gas	174	Natural Gas	174
Harris	386493	2HARRIS 1B 18.000	1B	Natural Gas	174	Natural Gas	174
Harris	386494	2HARRIS 2ST 21.000	2	Natural Gas	286.6	Natural Gas	286.6
Harris	386495	2HARRIS 2A 18.000	2A	Natural Gas	185	Natural Gas	185
Harris	386496	2HARRIS 2B 18.000	2B	Natural Gas	185	Natural Gas	185
Harris Dam	386531	2HARISGEN 13.800	H1	Hydro	62	Hydro	62
Harris Dam	386531	2HARISGEN 13.800	H2	Hydro	62	Hydro	62
Hatch	383811	2HATCH 1 24.000	N1	Nuclear	880.2	Nuclear	942.6
Hatch	383812	2HATCH 2 24.000	N2	Nuclear	889.7	Nuclear	964.9999
Hattiesburg Solar	386888	2HATTIESB SL34.500	S1	Solar	50.8	Solar	50.8
Hawk Road	383927	2HAWK RD 1 18.000	1	Natural Gas	153.4	Natural Gas	153.4
Hawk Road	383928	2HAWK RD 2 18.000	2	Natural Gas	151	Natural Gas	151
Hawk Road	383929	2HAWK RD 3 18.000	3	Natural Gas	153	Natural Gas	153
Hazelhurst Solar 1	383428	3SR HAZLE 1 115.00	S1	Solar	20	Solar	20
Hazelhurst Solar 3	383429	2SR HAZLE 3 34.500	S1	Solar	47.3	Solar	47.3
Hazlehurst Solar 2	383427	2SR HAZLE 2 34.500	S1	Solar	52	Solar	52
Henry Dam	386501	2HENRYGEN 11.500	H1	Hydro	62	Hydro	62
Hickory Solar	383329	2HICKORY SLR34.500	S1	N/A	N/A	Solar	267.9
Hillabee	386437	2HILL ST1 23.000	1	Natural Gas	78.66666667	Natural Gas	78.6666666
Hillabee	386438	2HILLCT1A 16.000	1A	Natural Gas	65.66666667	Natural Gas	65.6666666
Hillabee	386439	2HILLCT1B 16.000	1B	Natural Gas	65.66666667	Natural Gas	65.6666666
Hobnail Solar	383468	2HOBNAIL SLR34.500	S1	Solar	70	Solar	70
Hog Bayou	386089	2HOGBAYOU 1 13.800	1	Natural Gas	74	Natural Gas	74
Hog Bayou	386090	2HOGBAYOU1A 18.000	1 A	Natural Gas	150	Natural Gas	150

Summer Peak 2027 & 2	035 Regional SER	TP V3 Models		2	027	2	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)	
Holt Dam	384355	2HOLT GEN 13.800	H1	Hydro	45	Hydro	45	
Hope Hull Solar	386011	2HOPEHUL SLR34.500	S1	N/A	N/A	Solar	80	
Jeffersonville	380813	3JEFFERSONVL115.00	S1	Solar	0	Solar	0	
Jordan Dam	386561	2JORD1GEN 12.000	H1	Hydro	28	Hydro	28	
Jordan Dam	386561	2JORD1GEN 12.000	H2	Hydro	28	Hydro	28	
Jordan Dam	386563	2JORD3GEN 12.000	Н3	Hydro	28	Hydro	28	
Jordan Dam	386563	2JORD3GEN 12.000	H4	Hydro	28	Hydro	28	
Kingsbay Solar ¹	383414	2KNGSBAY SLR34.500	S1	Solar	0	Solar	0	
Kingston Solar ¹	383332	2KINGSTN SLR34.500	S1	N/A	N/A	Solar	0	
Lancaster Solar	383435	2LANCSTR SLR34.500	S1	Solar	80	Solar	80	
Lauderdale East Solar	386889	2LAUDR E SLR34.500	S1	Solar	55	Solar	55	
Laurens County BESS	383356	2LAURENSBESS34.500	B1	N/A	N/A	Battery	200	
Laurens County Solar	383355	2LAURENSSLR 34.500	S1	N/A	N/A	Solar	200	
Laurens I Solar ¹	383326	2LRENS 1 SLR34.500	S1	Solar	0	Solar	0	
Lay Dam	386541	2LAY1-3GN 11.500	H1	Hydro	30	Hydro	30	
Lay Dam	386541	2LAY1-3GN 11.500	H2	Hydro	30	Hydro	30	
Lay Dam	386541	2LAY1-3GN 11.500	НЗ	Hydro	28.5	Hydro	28.5	
Lay Dam	386544	2LAY4-6GN 11.500	H4	Hydro	30	Hydro	30	
Lay Dam	386544	2LAY4-6GN 11.500	H5	Hydro	31	Hydro	31	
Lay Dam	386544	2LAY4-6GN 11.500	Н6	Hydro	30	Hydro	30	
LG&E Monroe	383862	2LGEMONROE1 16.000	1	Natural Gas	153	Natural Gas	153	
LG&E Monroe	383863	2LGEMONROE2 16.000	2	Natural Gas	156	Natural Gas	156	
LG&E Monroe	383864	2LGEMONROE3 16.000	3	Natural Gas	156	Natural Gas	156	
Lindsay Hill	386423	2LHILL 1ST 22.000	1	Natural Gas	361	Natural Gas	414.9	
Lindsay Hill	386424	2LHILL 1A 18.000	1A	Natural Gas	163	Natural Gas	168.5	
Lindsay Hill	386425	2LHILL 1B 18.000	1B	Natural Gas	163	Natural Gas	168.5	
Lindsay Hill	386426	2LHILL 1C 18.000	1C	Natural Gas	163	Natural Gas	182.5	
Liveoak Solar	383403	2LIVEOAK SLR34.500	S1	Solar	51	Solar	51	
Lloyd Shoals Dam	383501	2LLOYD SHL 2.3000	H1	Hydro	19.6	Hydro	19.6	

Summer Peak 2027 &	2035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Lowman EC 1	317712	2LOWMANEC1 19.000	1	Natural Gas	384	Natural Gas	384
Lowman EC 2	317713	2LOWMANEC2 21.000	2	Natural Gas	257	Natural Gas	257
Lowman EC 3	317714	2LOWMANEC3 19.000	3	N/A	N/A	Natural Gas	400
Lowndes County	386083	2LOWDN CO1 13.800	1	Natural Gas	11.9	Natural Gas	11.9
Lowndes County	386084	2LOWDN CO2 13.800	1A	Natural Gas	72.6	Natural Gas	72.6
Lumpkin Solar	383470	2SR LUMPKIN 34.500	S1	Solar	100	Solar	100
Martin Dam	386521	2LMARTGEN 13.800	H1	Hydro	40	Hydro	40
Martin Dam	386521	2LMARTGEN 13.800	H2	Hydro	40	Hydro	40
Martin Dam	386521	2LMARTGEN 13.800	Н3	Hydro	40	Hydro	40
Martin Dam	386551	2MART1GEN 12.000	H1	Hydro	45.9	Hydro	45.9
Martin Dam	386552	2MART2GEN 12.000	H2	Hydro	37.7	Hydro	37.7
Martin Dam	386553	2MART3GEN 12.000	НЗ	Hydro	37.7	Hydro	37.7
Martin Dam	386554	2MART4GEN 12.000	H4	Hydro	57.1	Hydro	57.1
McDonough	383600	2MCDON 3B 13.800	3B	Natural Gas	40	Natural Gas	40
McDonough	383878	2MCDON 4ST 18.000	4	Natural Gas	375	Natural Gas	375
McDonough	383879	2MCDON 4A 21.000	4A	Natural Gas	246	Natural Gas	246
McDonough	383880	2MCDON 4B 21.000	4B	Natural Gas	246	Natural Gas	246
McDonough	383883	2MCDON 6ST 18.000	6	Natural Gas	374	Natural Gas	374
McDonough	383884	2MCDON 6A 21.000	6A	Natural Gas	242	Natural Gas	242
McDonough	383885	2MCDON 6B 21.000	6B	Natural Gas	242	Natural Gas	242
McDonough	383886	2MCDON 3A 13.800	3A	Natural Gas	40	Natural Gas	40
McDonough	383961	2MCDON 5ST 18.000	5	Natural Gas	374	Natural Gas	374
McDonough	383962	2MCDON 5A 21.000	5A	Natural Gas	242	Natural Gas	242
McDonough	383963	2MCDON 5B 21.000	5B	Natural Gas	242	Natural Gas	242
McGrau Ford BESS	383399	2MCGRAU BESS34.500	B1	Battery	530	Battery	530
McIntosh	383348	2MCINT 12ST 21.000	12	N/A	N/A	Natural Gas	330
McIntosh	383349	2MCINT 12CT 23.500	1A	N/A	N/A	Natural Gas	414
McIntosh	389122	2MCINCT-1 13.800	1	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389123	2MCINCT-2 13.800	2	Natural Gas	82.2	Natural Gas	82.2
				•		•	

Summer Peak 2027 8	& 2035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
McIntosh	389124	2MCINCT-3 13.800	3	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389125	2MCINCT-4 13.800	4	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389126	2MCINCT-5 13.800	5	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389127	2MCINCT-6 13.800	6	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389128	2MCINCT-7 13.800	7	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389129	2MCINCT-8 13.800	8	Natural Gas	82.2	Natural Gas	82.2
McIntosh	389131	2MCINT 10ST 21.000	10	Natural Gas	288.4	Natural Gas	286
McIntosh	389132	2MCINT 10A 21.000	1A	Natural Gas	195.5	Natural Gas	218
McIntosh	389133	2MCINT 10B 21.000	1B	Natural Gas	195.5	Natural Gas	218
McIntosh	389134	2MCINT 11ST 21.000	11	Natural Gas	288.2	Natural Gas	286
McIntosh	389135	2MCINT 11A 21.000	1A	Natural Gas	195.6	Natural Gas	218
McIntosh	389136	2MCINT 11B 21.000	1B	Natural Gas	195.6	Natural Gas	218
McIntosh 1	317721	2MCNTSH1G 13.800	1	Natural Gas	110	Natural Gas	110
McIntosh 2	317722	2MCNTSH2G 13.800	2	Natural Gas	114	Natural Gas	114
McIntosh 3	317723	2MCNTSH3G 13.800	3	Natural Gas	114	Natural Gas	114
McIntosh 4	317754	2MCNTSH4G 16.500	4	Natural Gas	172	Natural Gas	172
McIntosh 5	317755	2MCNTSH5G 16.500	5	Natural Gas	173	Natural Gas	173
McIntosh BESS	389201	2MCINT BESS 34.500	B1	N/A	N/A	Battery	250
MCLB Solar	383415	2MCLB SOLAR 34.500	S1	Solar	31	Solar	31
McManus	383821	2MCMANUS 4A 13.800	4A	Natural Gas	44.4	Natural Gas	44.4
McManus	383822	2MCMANUS 4B 13.800	4B	Natural Gas	44.4	Natural Gas	44.4
McManus	383823	2MCMANUS 4C 13.800	4C	Natural Gas	44.4	Natural Gas	44.4
McManus	383824	2MCMANUS 4D 13.800	4D	Natural Gas	44.4	Natural Gas	44.4
McManus	383825	2MCMANUS 4E 13.800	4E	Natural Gas	44.4	Natural Gas	44.4
McManus	383826	2MCMANUS 4F 13.800	4F	Natural Gas	44.4	Natural Gas	44.4
McManus	383833	2MCMANUS 3A 13.800	3A	Natural Gas	44.4	Natural Gas	44.4
McManus	383834	2MCMANUS 3B 13.800	3B	Natural Gas	44.4	Natural Gas	44.4
McManus	383835	2MCMANUS 3C 13.800	3C	Natural Gas	44.4	Natural Gas	44.4
McWilliams 1	317731	2MCWLMS1G 4.1600	1	Natural Gas	8	Natural Gas	8

Summer Peak 2027 & 20	35 Regional SER	TP V3 Models		20	027	20	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
McWilliams 2	317732	2MCWLMS2G 4.1600	2	Natural Gas	8	Natural Gas	8
McWilliams 3	317733	2MCWLMS3G 13.800	3	Natural Gas	17	Natural Gas	17
McWilliams 4	317734	2MCWLMS4G 13.800	4	Natural Gas	119	Natural Gas	119
Metter Solar	383318	2METTER SLR 34.500	S1	Solar	80	Solar	80
Mid Georgia	383711	2MID GA 1ST 13.800	1	Natural Gas	96	Natural Gas	96
Mid Georgia	383712	2MID GA 1A 13.800	1A	Natural Gas	102	Natural Gas	102
Mid Georgia	383713	2MID GA 1B 13.800	1B	Natural Gas	102	Natural Gas	102
Miller	386401	2MILLER 1 24.000	1	Coal	714	Coal	714
Miller	386402	2MILLER 2 24.000	2	Coal	708	Coal	708
Miller	386403	2MILLER 3 24.000	3	Coal	736	Coal	736
Miller	386404	2MILLER 4 24.000	4	Coal	750	Coal	750
Millers Ferry Dam	385402	2MILERSFY1 13.800	H1	Hydro	30	Hydro	30
Millers Ferry Dam	385403	2MILERSFY2 13.800	H2	Hydro	30	Hydro	30
Millers Ferry Dam	385404	2MILERSFY3 13.800	НЗ	Hydro	30	Hydro	30
Mitchell BESS	383389	2MITCHELBESS34.500	B1	N/A	N/A	Battery	150
Mitchell Dam	386574	2MITC4GEN 6.6000	H4	Hydro	19	Hydro	19
Mitchell Dam	386575	2MITC5GEN 13.800	H5	Hydro	48	Hydro	48
Mitchell Dam	386575	2MITC5GEN 13.800	Н6	Hydro	48	Hydro	48
Mitchell Dam	386575	2MITC5GEN 13.800	H7	Hydro	48	Hydro	48
Mitchell Solar	383289	2MITCHELLSLR34.500	S1	N/A	N/A	Solar	150
Monroe Power	383860	2MONROEPWR 113.800	1	Natural Gas	154.5	Natural Gas	154.5
Monroe Power	383861	2MONROEPWR 213.800	2	Natural Gas	154.5	Natural Gas	154.5
Montgomery Solar ¹	386015	2MONTGY SLR 34.500	S1	Solar	0	Solar	0
Moody Air Force Solar	383417	2MAFB SLR 34.500	S1	Solar	50	Solar	50
Moonshot Solar	386841	2MOONSHOT SL34.500	S1	Solar	78.5	Solar	78.5
Morgan Falls Dam	383500	2MORGAN F 4.2000	H1	Hydro	10.7	Hydro	10.7
Mossy Branch BESS	383400	2MOSSY BESS 34.500	B1	Battery	65	Battery	65
MS Bainbridge	383890	2MSBAINBR 13.800	1	Natural Gas	80	Natural Gas	80
Newton Solar ¹	386846	2NEWTON SLR 34.500	S1	N/A	N/A	Solar	0

Summer Peak 2027 & 20	035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
North Highlands Dam	383525	2N HIGHLAND 12.000	H1	Hydro	34.4	Hydro	34.4
Notch 4 Solar	386000	2NOTCH4 34.500	S1	Solar	80	Solar	80
Notch 5 Solar	386001	2NOTCH5 34.500	S1	Solar	80	Solar	80
Oakman Solar 1	386007	20AKMAN SLR134.500	S1	N/A	N/A	Solar	80
Oakman Solar 2	386008	20AKMAN SLR234.500	S1	N/A	N/A	Solar	80
Old Hayneville Solar	386096	20LDHAYSOLAR34.500	S1	Solar	80	Solar	80
Old Midville Solar	383402	3MIDVIL SLR 115.00	S1	Solar	20	Solar	20
Oliver Dam 1	383522	20LIVER 1 7.2000	H1	Hydro	17.7	Hydro	17.7
Oliver Dam 2	383523	20LIVER 2 7.6000	H2	Hydro	17.7	Hydro	17.7
Oliver Dam 3	383524	20LIVER 3-4 7.6000	Н3	Hydro	17.7	Hydro	17.7
Oliver Dam 4	383524	20LIVER 3-4 7.6000	H4	Hydro	6	Hydro	6
OPC Hartwell	383881	20PCHWE 1 18.000	1	Natural Gas	153	Natural Gas	153
OPC Hartwell	383882	20PCHWE 2 18.000	2	Natural Gas	153	Natural Gas	153
Origis Solar	386046	2LAFAYTE SLR34.500	S1	Solar	80	Solar	80
Origis Solar	386887	20RIGIS SLR 34.500	S1	Solar	52	Solar	52
Paw Solar	383407	6PAW PAW SLR230.00	S1	Solar	30	Solar	30
Perry Solar	383439	2SR PERRY 34.500	S1	Solar	82	Solar	82
Piedmont	383777	2PIEDMNT BIO13.800	1	Biomass	55	Biomass	55
Pine Ridge	383497	2PINE RIDGE 24.950	1	Biomass	8.2	Biomass	8.2
Pineview Solar	383334	2PINEVW SLR 34.500	S1	Solar	80	Solar	80
Pinewood Solar ¹	383341	2PINEWD SLR 34.500	S1	Solar	0	Solar	0
Point A Hydro	317071	2_1POINTA_HY2.3000	H1	Hydro	8	Hydro	8
Quitman II Solar	383449	2QUITMAN2 PV34.500	S1	Solar	150	Solar	150
Quitman Solar	383444	2QUITMAN1 PV34.500	S1	Solar	150	Solar	150
Rabun Gap	383775	2RABUN BIO 13.800	1	Biomass	18	Biomass	18
Ratcliffe	386891	2RATCLF1ST_N18.000	1	Natural Gas	331.4	Natural Gas	331.4
Ratcliffe	386892	2RATCLF1A_N 18.000	1A	Natural Gas	195.9	Natural Gas	195.9
Ratcliffe	386893	2RATCLF1B_N 18.000	1B	Natural Gas	195.9	Natural Gas	195.9
RF Henry Dam	385401	2RF HENRY 1313.800	H1	Hydro	82	Hydro	82
				-		-	

Summer Peak 2027 & 203	35 Regional SER	TP V3 Models		20	027	20	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Rice Creek Solar ¹	386010	2RICECRK SLR34.500	S1	Solar	0	Solar	0
Richland Creek	383498	2RICHLD CK 4.2000	1	Biomass	11	Biomass	11
Rincon Solar	383422	2RINCON SLR 34.500	S1	Solar	16	Solar	16
Robins AFB Solar	383416	2RAFB SLR 34.500	S1	Solar	133	Solar	133
Robins Air Force Base	383741	2RAFB CT A 13.800	Α	Natural Gas	80	Natural Gas	80
Robins Air Force Base	383742	2RAFB CT B 13.800	В	Natural Gas	80	Natural Gas	80
Rock House Solar	383315	2RK HSE SLR 34.500	S1	Solar	252.7	Solar	252.7
Rocky Mountain	383511	2ROCKY MTN 120.000	P1	Pumped Hydro	272.3	Pumped Hydro	272.3
Rocky Mountain	383512	2ROCKY MTN 220.000	P2	Pumped Hydro	272.3	Pumped Hydro	272.3
Rocky Mountain	383513	2ROCKY MTN 320.000	Р3	Pumped Hydro	272.3	Pumped Hydro	272.3
Rumble Road	383721	2RMBL CT1 13.800	1	Natural Gas	112	Natural Gas	112
Rumble Road	383722	2RMBL CT2 13.800	2	Natural Gas	112	Natural Gas	112
SA Solar ¹	383331	2SA SOLAR 34.500	S1	N/A N/A		Solar	0
Sandersville Solar	383322	2SNDRSVLSLR 34.500	S1	N/A	N/A	Solar	50
Sandhills 2 Solar & Battery ¹	383340	2SANDHL2 SLR34.500	B1	Battery	0	Battery	0
Sandhills 2 Solar & Battery ¹	383340	2SANDHL2 SLR34.500	S1	Solar	0	Solar	0
Sandhills Solar	383409	2SANDHLS SLR34.500	S1	Solar	143	Solar	143
Saturn Solar 1	386004	2SATURN SLR134.500	S1	Solar	79.9	Solar	79.9
Saturn Solar 2	386005	2SATURN SLR234.500	S1	Solar	79.9	Solar	79.9
Scherer	383681	2SCHERER 1 25.000	1	Coal	917.9	Coal	917.9
Scherer	383682	2SCHERER 2 25.000	2	Coal	900.1	Coal	900.1
Scherer	383683	2SCHERER 3 25.000	3	Coal	881.0001	Coal	881.0001
Scherer	383684	2SCHERER 4 25.000	4	Solar	0	Solar	0
Sewell Creek	383851	2SEWCRK 21 13.800	21	Natural Gas	137.4	Natural Gas	137.4

Summer Peak 2027 & 2	2035 Regional SER	TP V3 Models		20	027	20	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Sewell Creek	383852	2SEWCRK 22 13.800	22	Natural Gas	138.3	Natural Gas	138.3
Sewell Creek	383853	2SEWCRK 11 13.800	11	Natural Gas	115.5	Natural Gas	115.5
Sewell Creek	383854	2SEWCRK 12 13.800	12	Natural Gas	116.5	Natural Gas	116.5
Shamrock Solar	383345	2SHAMROCKSLR34.500	S1	N/A	N/A	Solar	225
Shortleaf Solar	383338	2SHORTLEAFSL34.500	S1	N/A	N/A	Solar	200
Shubuta Creek Solar	386845	2SHBUTA SLR 34.500	S1	N/A	N/A	Solar	156
Simon	383798	2SSFGEN 34.500	S1	Solar	30	Solar	30
Sinclair Dam 1	383548	2SINCLAIR 1 6.9000	H1	Hydro	19.3	Hydro	19.3
Sinclair Dam 2	383549	2SINCLAIR 2 6.9000	H2	Hydro	19.3	Hydro	19.3
Smith Dam	384142	2SMITH GN 13.800	H1	Hydro	82.5	Hydro	82.5
Smith Dam	384142	2SMITH GN 13.800	H2	Hydro	82.5	Hydro	82.5
Snipesville Solar I	383471	2SR SNPSVL 134.500	S1	Solar	105.7	Solar	105.7
Snipesville Solar II	383472	2SR SNPSVL 234.500	S1	Solar	119.7	Solar	119.7
Snipesville Solar III	383473	2SR SNPSVL 334.500	S1	Solar	130.3	Solar	130.3
Sonny Solar	383454	2SONNY PV 34.500	S1	Solar	40	Solar	40
South Hall BESS	383225	2S HALL BESS34.500	B1	N/A	N/A	Battery	250
Southern Oak Solar (Camilla II)	383440	2SO OAK PV 134.500	S1	Solar	160	Solar	160
SOWEGA	383791	2BACNTN 1 13.800	1	Natural Gas	32.7	Natural Gas	32.7
SOWEGA	383792	2BACNTN 2 13.800	2	Natural Gas	32.7	Natural Gas	32.7
SOWEGA	383802	2BACNTN 3 13.800	3	Natural Gas	32.6	Natural Gas	32.6
SOWEGA	383803	2BACNTN 4 13.800	4	Natural Gas	32.7	Natural Gas	32.7
SOWEGA	383804	2BACNTN 5 13.800	5	Natural Gas	32.7	Natural Gas	32.7
SOWEGA	383805	2BACNTN 6 13.800	6	Natural Gas	32.6	Natural Gas	32.6
Spring Branch	381493	3SPRING BRN 115.00	S1	Solar	25	Solar	25
SR Ailey Solar	383476	2SR AILEY PV34.500	S1	Solar	80	Solar	80
SR Bacon	383320	2SR BACON 34.500	S1	N/A	N/A	Solar	300
SR Rochelle	383324	2SR ROCHLOW 34.500	S1	Solar	142.2	Solar	142.2
Stagecoach Solar	383424	2STAGECH SLR34.500	S1	Solar	80	Solar	80

Summer Peak 2027 & 20	35 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Steamroller Solar	386844	2STMRLR SLR 34.500	S1	N/A	N/A	Solar	150
Stewart Solar	383413	2STEWART SLR34.500	B1	Battery	13	Battery	13
Stewart Solar	383413	2STEWART SLR34.500	S1	Solar	30	Solar	30
Stockton Solar 1	386016	2STKTN_SLR1 34.500	S1	N/A	N/A	Solar	80
Stockton Solar 2	386017	2STKTN_SLR2 34.500	S1	N/A	N/A	Solar	180
Sweatt	386800	2SWEATT A 13.800	А	Natural Gas	32	Natural Gas	32
T.A. Smith I	383604	2TA SMITH 1S18.000	1	Natural Gas	289.8	Natural Gas	289.8
T.A. Smith I	383605	2TA SMITH 1A18.000	1A	Natural Gas	185	Natural Gas	185
T.A. Smith I	383606	2TA SMITH 1B18.000	1B	Natural Gas	183	Natural Gas	183
T.A. Smith II	383607	2TA SMITH 2S18.000		Natural Gas	290	Natural Gas	290
T.A. Smith II	383608	2TA SMITH 2A18.000	2A	Natural Gas	185	Natural Gas	185
T.A. Smith II	383609	2TA SMITH 2B18.000	2B	Natural Gas	183	Natural Gas	183
Talbot County	383911	2TALBOT 1 13.800	1	Natural Gas	114.2	Natural Gas	114.2
Talbot County	383912	2TALBOT 2 13.800	2	Natural Gas	113	Natural Gas	113
Talbot County	383913	2TALBOT 3 13.800	3	Natural Gas	110.3	Natural Gas	110.3
Talbot County	383914	2TALBOT 4 13.800	4	Natural Gas	114.5	Natural Gas	114.5
Talbot County	383915	2TALBOT 5 13.800	5	Natural Gas	113.7	Natural Gas	113.7
Talbot County	383916	2TALBOT 6 13.800	6	Natural Gas	114	Natural Gas	114
Talbot County	383917	2TALBOT 7 18.000	7	N/A	N/A	Natural Gas	250
Tallulah Falls Dam 1	383542	2TALLULAH 1 6.6000	H1	Hydro	11.4	Hydro	11.4
Tallulah Falls Dam 2	383543	2TALLULAH 2 6.6000	H2	Hydro	11.4	Hydro	11.4
Tallulah Falls Dam 3	383544	2TALLULAH 3 6.6000	Н3	Hydro	11.4	Hydro	11.4
Tallulah Falls Dam 4	383545	2TALLULAH 4 6.6000	H4	Hydro	11.4	Hydro	11.4
Tallulah Falls Dam 5	383546	2TALLULAH 5 6.6000	H5	Hydro	11.4	Hydro	11.4
Tallulah Falls Dam 6	383547	2TALLULAH 6 6.6000	Н6	Hydro	11.4	Hydro	11.4
Tanglewood Solar	383446	2TANGLE SLR 34.500	S1	Solar	60	Solar	60
Tenaska - Heard County	383921	2TENSKA GA 118.000	1	Natural Gas	157.5	Natural Gas	157.5
Tenaska - Heard County	383922	2TENSKA GA 218.000	2	Natural Gas	157.5	Natural Gas	157.5
Tenaska - Heard County	383923	2TENSKA GA 318.000	3	Natural Gas	157.5	Natural Gas	157.5

Summer Peak 2027 & 20	35 Regional SER	TP V3 Models		20	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Tenaska - Heard County	383924	2TENSKA GA 418.000	4	Natural Gas	157.5	Natural Gas	157.5
Tenaska - Heard County	383925	2TENSKA GA 518.000	5	Natural Gas	157.5	Natural Gas	157.5
Tenaska - Heard County	383926	2TENSKA GA 618.000	6	Natural Gas	157.5	Natural Gas	157.5
Terrell County Solar	383430	2SR TERRELL 34.500	S1	Solar	86.8	Solar	86.8
Terrora Dam	383530	2TERRORA 6.6000	H1	Hydro	19.8	Hydro	19.8
Theodore	386085	2THEO 1 13.800	1	Natural Gas	64	Natural Gas	64
Theodore	386086	2THEO A 18.000	1A	Natural Gas	167	Natural Gas	167
Thomson BESS	383290	2THOMSONBESS34.500	B1	N/A	N/A	Battery	500
Three Rocks Solar ¹	383335	2THR_RCK_SLR34.500	S1	Solar	0	Solar	0
Thurlow	386591	2THURLGEN 13.800	H1	Hydro	69.4	Hydro	69.4
Thurlow	386591	2THURLGEN 13.800	Н3	Hydro	10	Hydro	10
Tiger Creek	383855	2TIGER CK1 18.000	1	Natural Gas	158	Natural Gas	158
Tiger Creek	383856	2TIGER CK2 18.000	2	Natural Gas	158	Natural Gas	158
Tiger Creek	383857	2TIGER CK3 18.000	3	Natural Gas	157	Natural Gas	157
Tiger Creek	383858	2TIGER CK4 18.000	4	Natural Gas	157	Natural Gas	157
Timberland Solar	383308	2TMBRLND SLR34.500	S1	Solar	143.6	Solar	143.6
Toombs Solar	383431	2SR TOOMBS 34.500	S1	Solar	250	Solar	250
Tri-State Solar 1 ¹	383342	2TRI ST SLR134.500	S1	Solar	0	Solar	0
Tri-State Solar 2 ¹	383344	2TRI ST SLR234.500	S1	N/A	N/A	Solar	0
Tugalo Dam	383532	2TUGALO 1-2 6.6000	H1	Hydro	22.2	Hydro	22.2
Tugalo Dam	383533	2TUGALO 3-4 6.6000	НЗ	Hydro	22.2	Hydro	22.2
Turkey Run Solar	383450	2HICK PK PV 34.500	S1	Solar	195.5	Solar	195.5
Twiggs BESS	383243	2TWIGGS BESS34.500	B1	N/A	N/A	Battery	200
Twiggs Solar	383443	2TWIGGS SLR 34.500	S1	Solar	200	Solar	200
Tyre Bridge Solar ¹	383343	2TYRE BG SLR34.500	S1	Solar	0	Solar	0
USMC Supply	380714	3USMC SUPPLY115.00	1	Biomass	12.5	Biomass	12.5
Vann Unit 1	317701	2VANN 1G 18.000	1	Natural Gas	170	Natural Gas	170
Vann Unit 2	317702	2VANN 2G 18.000	2	Natural Gas	170	Natural Gas	170
Vann Unit 3	317703	2VANN 3G 18.000	3	Natural Gas	182	Natural Gas	182

Summer Peak 2027 & 2	035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Vogtle	383751	2VOGTLE1 25.000	N1	Nuclear	1158.4	Nuclear	1210
Vogtle	383752	2VOGTLE2 25.000	N2	Nuclear	1160.5	Nuclear	1217
Vogtle	383753	2VOGTLE3 26.000	N3	Nuclear	1114	Nuclear	1114
Vogtle	383754	2VOGTLE4 26.000	N4	Nuclear	1114	Nuclear	1114
Wadley Solar	383305	2WADLEY SLR 34.500	S1	Solar	270	Solar	270
Walker Springs Solar	386027	2WLKR SPR I 34.500	S1	Solar	80	Solar	80
Walker Springs Solar	386028	2WLKR SPR II34.500	S1	Solar	80	Solar	80
Wallace Dam 1	383536	2WALLACE 1-314.400	P1	Pumped Hydro	50.7	Pumped Hydro	50.7
Wallace Dam 2	383536	2WALLACE 1-314.400	P2	Pumped Hydro	50.7	Pumped Hydro	50.7
Wallace Dam 3	383536	2WALLACE 1-314.400	Р3	Pumped Hydro	56.8	Pumped Hydro	56.8
Wallace Dam 4	383537	2WALLACE 4-614.400	P4	Pumped Hydro	54.8	Pumped Hydro	54.8
Wallace Dam 5	383537	2WALLACE 4-614.400	P5	Pumped Hydro	50.7	Pumped Hydro	50.7
Wallace Dam 6	383537	2WALLACE 4-614.400	P6	Pumped Hydro	50.7	Pumped Hydro	50.7
Walnut Branch Solar ¹	383337	2WLBR_SR GEN34.500	S1	N/A	N/A	Solar	0
Walton Discover	383905	2WALT DISC 113.800	1	Natural Gas	50	Natural Gas	50
Walton Discover	383906	2WALT DISC 213.800	2	Natural Gas	50	Natural Gas	50
Wansley	383254	2WANSLEY10ST21.000	10	N/A	N/A	Natural Gas	330
Wansley	383255	2WANSLEY10CT23.500	1A	N/A	N/A	Natural Gas	414
Wansley	383256	2WANSLEY11ST21.000	11	N/A	N/A	Natural Gas	330
Wansley	383257	2WANSLEY11CT23.500	1A	N/A	N/A	Natural Gas	414
Wansley	383620	2WANSLEY 5A 13.800	5A	Oil	49	Oil	49
Wansley	383623	2WANSLEY 6ST18.000 6		Natural Gas	225	Natural Gas	225
Wansley	383624	2WANSLEY 6A 18.000	6A	Natural Gas	184	Natural Gas	184
Wansley	383625	2WANSLEY 6B 18.000	6B	Natural Gas	184	Natural Gas	184

Summer Peak 2027 & 203	35 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Wansley	383626	2WANSLEY 7ST18.000	7	Natural Gas	227.2	Natural Gas	227.2
Wansley	383627	2WANSLEY 7A 18.000	7A	Natural Gas	185.4	Natural Gas	185.4
Wansley	383628	2WANSLEY 7B 18.000	7B	Natural Gas	185.4	Natural Gas	185.4
Wansley	383629	2WANSLEY 9ST18.000	1	Natural Gas	192.6	Natural Gas	192.6
Wansley	383630	2WANSLEY 9A 18.000	1A	Natural Gas	138	Natural Gas	138
Wansley	383631	2WANSLEY 9B 18.000	1B	Natural Gas	138	Natural Gas	138
Wansley BESS	383258	2WANSBESSLS134.500	B1	N/A	N/A	Battery	500
Wansley Provisional Unit	389517	2WANSLEY_ST121.000	XS	N/A	N/A	Natural Gas	330
Wansley Provisional Unit	389518	2WANSLEY_CT123.500	XA	N/A	N/A	Natural Gas	449
Warthen	383743	2WARTHEN 1 13.800	1	Natural Gas	69	Natural Gas	69
Warthen	383744	2WARTHEN 2 13.800	2	Natural Gas	69	Natural Gas	69
Warthen	383745	2WARTHEN 3 13.800	3	Natural Gas	69	Natural Gas	69
Warthen	383746	2WARTHEN 4 13.800	4	Natural Gas	69	Natural Gas	69
Warthen	383747	2WARTHEN 5 13.800	5	Natural Gas	44	Natural Gas	44
Warthen	383748	2WARTHEN 6 13.800	6	Natural Gas	69	Natural Gas	69
Warthen	383749	2WARTHEN 7 13.800	7	Natural Gas	69	Natural Gas	69
Warthen	383750	2WARTHEN 8 13.800	8	Natural Gas	69	Natural Gas	69
Washington County	386081	2WASH CO 1 13.800	1	Natural Gas	22.8	Natural Gas	22.8
Washington County	386082	2WASH CO 2 13.800	1A	Natural Gas	77.9	Natural Gas	77.9
Washington County Solar	383464	2WSHCNTY SLR34.500	S1	Solar	150	Solar	150
Watson	386850	2WATSON A 13.800	Α	Natural Gas	33	Natural Gas	33
Watson	386854	2WATSON 4 20.000	4	Natural Gas	271.5	Natural Gas	271.5
Watson	386855	2WATSON 5 24.000	5	Natural Gas	516	Natural Gas	516
Weiss Dam	386511	2WEISSGEN 11.500	H1	Hydro	23.7	Hydro	23.7
Weiss Dam	386511	2WEISSGEN 11.500	H2	Hydro	23.7	Hydro	23.7
Weiss Dam	386511	2WEISSGEN 11.500	НЗ	Hydro	23.7	Hydro	23.7
West Fork Solar ¹	383336	2W_FRK_SLR_G34.500	S1	Solar	0	Solar	0
West Point Dam	383508	2W PT DAM 13.800	H1	Hydro	87	Hydro	87
Weyerhauser Biomass	389199	2WEYERPW BIO13.800	1	Biomass	40	Biomass	40

Summer Peak 2027 & 20	035 Regional SER	TP V3 Models		2	027	2	035
Plant	Bus Number	Bus Name	Id Fue		Pmax (MW)	Fuel Type	Pmax (MW)
Weyerhauser Biomass	389199	2WEYERPW BIO13.800	2	Biomass	25	Biomass	25
White Oak Solar	383404	2WHT OAK SLR34.500	S1	Solar	76.5	Solar	76.5
White Pine Solar	383405	2WH PINE SLR34.500	S1	Solar	102	Solar	102
Wilson	383761	2WILSON A 13.800	Α	Natural Gas	41	Natural Gas	41
Wilson	383762	2WILSON B 13.800	В	Natural Gas	56	Natural Gas	56
Wilson	383763	2WILSON C 13.800	С	Natural Gas	49	Natural Gas	49
Wilson	383764	2WILSON D 13.800	D	Natural Gas	41	Natural Gas	41
Wilson	383765	2WILSON E 13.800	Е	Natural Gas	54	Natural Gas	54
Wilson	383766	2WILSON F 13.800	F	Natural Gas	54	Natural Gas	54
Wilsonville Solar	383327	2WILSNVL SLR34.500	S1	Solar	0	Solar	200
Wing Solar	317129	2WINGSOLAR1G34.500	S1	Solar	80	Solar	80
Wolfskin Solar	383469	2WLFSKIN SLR34.500	S1	Solar	38	Solar	38
Yates	383646	2YATES 6 22.000	6	Natural Gas	355.5	Natural Gas	355.5
Yates	383647	2YATES 7 22.000	7	Natural Gas	358.5	Natural Gas	358.5
Yates	383648	2YATES 8 19.000	8	Natural Gas	441	Natural Gas	441
Yates	383649	2YATES 9 19.000	9	Natural Gas	441	Natural Gas	441
Yates	383650	2YATES 10 19.000	10	Natural Gas	0	Natural Gas	441
Yates BESS	383261	2YATESBESS1 34.500	B1	Battery	0	Battery	250
Yates BESS	383262	2YATESBESS2 34.500	B1	Battery	0	Battery	320
Yates Dam	384448	2YATE GEN 6.9000	H1	Hydro	46	Hydro	46
Yonah Dam	383534	2YONAH 6.6000	H1	Hydro	25.4	Hydro	25.4

¹ Generation with Notice To Proceed (NTP), but no transmission delivery service rights.

XII. Appendix 7: TVA BAA

The following information provides a more granular overview of the TVA BAA input assumptions and transmission expansion plan that are incorporated in the development of the SERTP regional transmission plan.

Table A7.1: 2025 SERTP Regional Transmission Plan – Transmission Project Snapshot by operating voltage (TVA BAA)

TVA DAA	100-120	121-150	151-199	200-299	300-399	400-550
TVA BAA	kV	kV	kV	kV	kV	kV
Transmission lines – New		-	164.5			2.2
(Circuit Mi.)			104.5			2.2
Transmission Lines – Uprates ¹	60.27		295.46			
(Circuit Mi.)	00.27		293.40			
Transformers ² – New						
Transformers ² – Replacements						
Static Compensators			2			

¹ A transmission line uprate may be the result of reconductoring and/or increasing the operating temperature/voltage along the transmission line.

² The voltages shown represent the operating voltages on the high side terminals of the transformer.

Table A7.2: Interface commitments¹ modeled in the SERTP Summer Peak models – TVA BAA

То	2027	2030	2035
PJM	-429	50	50
MISO	213	213	213
Duke Progress West	14	14	14
Southern	-398	64	61
LG&E/KU	3	3	3
Brookfield/Smoky Mountain	-384	-384	-384
SPP	-73	-73	-73
Owensboro Municipal	25	25	25
Total	-1029	-88	-91

¹ A positive number represents a net export from the TVA BAA.

A detailed listing of the changes in generation assumptions within the TVA BAA throughout the ten (10) year planning horizon, including the year(s) in which they occur, is provided in Table A7.3 below. Furthermore, supplemental information regarding noteworthy generation expansion and retirements/decertifications included in the 2025 series set of SERTP power flow models is provided below, while Table A7.4 provides a listing of generation assumptions based upon long-term, firm point-to-point commitments. The capacity (MW) values shown for each year reflect summer peak conditions. Table A7.5 provides a listing of all generators modeled in the 2025 Version 3 Summer Peak power flow models.

Table A7.3: Changes in Generation Assumptions Based Upon LSEs - TVA BAA

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Copeland	Solar		100	100	100	100	100	100	100	100	100
Cumberland CC	Natural Gas		1346	1346	1346	1346	1346	1346	1346	1346	1346
Cumberland FP Unit 1	Coal	1130	1130	1130	0						
Cumberland FP Unit 2	Coal	1130	0								
Hillsboro III	Solar		200	200	200	200	200	200	200	200	200
Horus KY	Solar	69.3	69.3	69.3	69.3	69.3	69.3	69.3	69.3	69.3	69.3
Kingston Aero	Natural Gas			848	848	848	848	848	848	848	848

SITE	FUEL TYPE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Kingston BESS	Battery				103	103	103	103	103	103	103
Kingston CC	Natural Gas			715	715	715	715	715	715	715	715
Kingston FP	Coal	1157	1157	0							
New Caledonia	Natural Gas		515	515	515	515	515	515	515	515	515
Normandy	Solar	213	213	213	213	213	213	213	213	213	213
Okolona	Solar		145	145	145	145	145	145	145	145	145
Spring Valley II	Solar		200	200	200	200	200	200	200	200	200
TS25-429	Battery			200	200	200	200	200	200	200	200
TS25-466	Solar			200	200	200	200	200	200	200	200
TS25-512	Solar + Storage				200	200	200	200	200	200	200
TS25-515	Solar			65	65	65	65	65	65	65	65
TS25-522	Solar		68	68	68	68	68	68	68	68	68
TS25-588	Natural Gas	198	198	198	198	198	198	198	198	198	198

Table A7.4: Generation Assumptions Based Upon Expected Long-term, Firm Point-to-Point Commitments – TVA BAA

Tubio III II dell'eracioni Ilboai	mptions Basea c	pon nip	оссой поп	8 (01111) 11	11111 1 011110	to i omit c	,0111111111	71100 1 11	1 21 11 1	
SITE	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
				None						

Table A7.5: Generating Units Modeled in the 2025 Version 3 Summer Peak Power flow Model - TVA BAA

Summer Peak 2027 & 203	Summer Peak 2027 & 2035 Regional SERTP V3 Models					2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Ackerman	364721	1ACKERMAN T116.000	1	Natural Gas	229.78	Natural Gas	229.78
Ackerman	364722	1ACKERMAN T216.000	1	Natural Gas	229.78	Natural Gas	229.78
Ackerman	364723	1ACKERMAN S116.000	1	Natural Gas	295.43	Natural Gas	295.43
Air Products & Chemicals	364902	1AIR PRODUCT13.200	1	DG	0	DG	0
Allen	364201	1ALLEN T1-4 13.800	1	Natural Gas	0	Natural Gas	0
Allen	364201	1ALLEN T1-4 13.800	2	Natural Gas	0	Natural Gas	0
Allen	364201	1ALLEN T1-4 13.800	3	Natural Gas	0	Natural Gas	0
Allen	364201	1ALLEN T1-4 13.800	4	Natural Gas	0	Natural Gas	0

Summer Peak 2027 &	2035 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Allen	364202	1ALLEN T5-8 13.800	5	Natural Gas	0	Natural Gas	0
Allen	364202	1ALLEN T5-8 13.800	6	Natural Gas	0	Natural Gas	0
Allen	364202	1ALLEN T5-8 13.800	7	Natural Gas	0	Natural Gas	0
Allen	364202	1ALLEN T5-8 13.800	8	Natural Gas	0	Natural Gas	0
Allen	364203	1ALLEN T9-1213.800	1	Natural Gas	0	Natural Gas	0
Allen	364203	1ALLEN T9-1213.800	2	Natural Gas	0	Natural Gas	0
Allen	364203	1ALLEN T9-1213.800	3	Natural Gas	0	Natural Gas	0
Allen	364203	1ALLEN T9-1213.800	9	Natural Gas	0	Natural Gas	0
Allen	364204	1ALLENT13-1613.800	1	Natural Gas	0	Natural Gas	0
Allen	364204	1ALLENT13-1613.800	2	Natural Gas	0	Natural Gas	0
Allen	364204	1ALLENT13-1613.800	3	Natural Gas	0	Natural Gas	0
Allen	364204	1ALLENT13-1613.800	4	Natural Gas	0	Natural Gas	0
Allen	364205	1ALLEN T17 13.800	1	Natural Gas	0	Natural Gas	0
Allen	364206	1ALLEN T18 13.800	1	Natural Gas	0	Natural Gas	0
Allen	364207	1ALLEN T19 13.800	1	Natural Gas	0	Natural Gas	0
Allen	364208	1ALLEN T20 13.800	1	Natural Gas	0	Natural Gas	0
Allen	364325	1ALLENCC CT125.000	1	Natural Gas	333	Natural Gas	333
Allen	364326	1ALLENCC CT225.000	1	Natural Gas	333	Natural Gas	333
Allen	364327	1ALLENCC ST119.000	1	Natural Gas	439	Natural Gas	439
Apalachia	364421	1APALACH H1 13.800	1	Hydro	41.19	Hydro	41.19
Apalachia	364422	1APALACH H2 13.800	1	Hydro	41.22	Hydro	41.22
Ardmore	364063	OARDMORE SOL0.6500	1	Solar	15.71	Solar	15.71
Barkley	364601	1BARKLEY H1 13.800	1	Hydro	35.5	Hydro	35.5
Barkley	364602	1BARKLEY H2 13.800	1	Hydro	35.5	Hydro	35.5
Barkley	364603	1BARKLEY H3 13.800	1	Hydro	35.5	Hydro	35.5
Barkley	364604	1BARKLEY H4 13.800	1	Hydro	35.5	Hydro	35.5
Bell Buckle	364025	OBELLBUCKSOLO.6000	1	Solar	32	Solar	32
Blue Ridge	364423	1BLUERIDG H112.500	1	Hydro	17.35	Hydro	17.35
Boone	364424	1BOONE H1 13.800	1	Hydro	37.8	Hydro	37.8

Summer Peak 2027 & 203	35 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Boone	364425	1BOONE H2 13.800	1	Hydro	37.8	Hydro	37.8
Boone	364426	1BOONE H3 13.800	1	Hydro	37.8	Hydro	37.8
Browns Ferry	364001	1BR FERRY N122.000	1	Nuclear	1297.6	Nuclear	1297.6
Browns Ferry	364002	1BR FERRY N222.000	1	Nuclear	1311.4	Nuclear	1311.4
Browns Ferry	364003	1BR FERRY N322.000	1	Nuclear	1302.5	Nuclear	1302.5
Brownsville	364701	1BROWNSVL T113.800	1	Natural Gas	115	Natural Gas	115
Brownsville	364702	1BROWNSVL T213.800	2	Natural Gas	115	Natural Gas	115
Brownsville	364703	1BROWNSVL T313.800	3	Natural Gas	116.86	Natural Gas	116.86
Brownsville	364704	1BROWNSVL T413.800	4	Natural Gas	115	Natural Gas	115
Bull Run	364109	1BULLRUN SC124.000	1	Coal	0	Coal	0
Bull Run	364110	1BULLRUN SC224.000	1	Coal	0	Coal	0
Caledonia	364801	1COGCALED T118.000	1	Natural Gas	179.24	Natural Gas	179.24
Caledonia	364802	1COGCALED S113.800	2	Natural Gas	119.34	Natural Gas	119.34
Caledonia	364803	1COGCALED T218.000	3	Natural Gas	177.09	Natural Gas	177.09
Caledonia	364804	1COGCALED S213.800	4	Natural Gas	120.41	Natural Gas	120.41
Caledonia	364805	1COGCALED T318.000	5	Natural Gas	177.09	Natural Gas	177.09
Caledonia	364806	1COGCALED S313.800	6	Natural Gas	119.34	Natural Gas	119.34
Canadaville	364027	OCANADA SOL 0.6000	1	Solar	16	Solar	16
Center Hill	364605	1CENTHILL H113.800	1	Hydro	52	Hydro	52
Center Hill	364606	1CENTHILL H213.800	1	Hydro	52	Hydro	52
Center Hill	364607	1CENTHILL H313.800	1	Hydro	52	Hydro	52
Chatuge	364428	1CHATUGE H1 6.9000	1	Hydro	13.92	Hydro	13.92
Cheatham	364608	1CHEATHAM H113.800	1	Hydro	13	Hydro	13
Cheatham	364609	1CHEATHAM H213.800	1	Hydro	13	Hydro	13
Cheatham	364610	1CHEATHAM H313.800	1	Hydro	13	Hydro	13
Cherokee	364511	1CHEROKEE H113.800	1	Hydro	38.43	Hydro	38.43
Cherokee	364512	1CHEROKEE H213.800	2	Hydro	38.43	Hydro	38.43

Summer Peak 2027 &	2035 Regional SERT	P V3 Models		20	27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Cherokee	364513	1CHEROKEE H313.800	3	Hydro	38.43	Hydro	38.43
Cherokee	364514	1CHEROKEE H413.800	4	Hydro	38.43	Hydro	38.43
Chickamauga	364431	1CHICKAMG H113.800	1	Hydro	35.8	Hydro	35.8
Chickamauga	364432	1CHICKAMG H213.800	1	Hydro	35.8	Hydro	35.8
Chickamauga	364433	1CHICKAMG H313.800	1	Hydro	35.8	Hydro	35.8
Chickamauga	364434	1CHICKAMG H413.800	1	Hydro	35.8	Hydro	35.8
Colbert	364081	1COLBERT CT918.000	9	Natural Gas	240	Natural Gas	240
Colbert	364082	1COLBERTCT1018.000	10	Natural Gas	240	Natural Gas	240
Colbert	364083	1COLBERTCT1118.000	11	Natural Gas	240	Natural Gas	240
Colbert	364211	1COLBERT T1 13.800	1	Natural Gas	49	Natural Gas	49
Colbert	364212	1COLBERT T2 13.800	2	Natural Gas	49	Natural Gas	49
Colbert	364213	1COLBERT T3 13.800	3	Natural Gas	49	Natural Gas	49
Colbert	364214	1COLBERT T4 13.800	4	Natural Gas	49	Natural Gas	49
Colbert	364215	1COLBERT T5 13.800	5	Natural Gas	49	Natural Gas	49
Colbert	364216	1COLBERT T6 13.800	6	Natural Gas	49	Natural Gas	49
Colbert	364217	1COLBERT T7 13.800	7	Natural Gas	49	Natural Gas	49
Colbert	364218	1COLBERT T8 13.800	8	Natural Gas	49	Natural Gas	49
Copeland Solar	364079	1COPELND SOL34.500	1	N/A	N/A	Solar	100
Cordell Hull	364611	1CORDELL H1 13.800	1	Hydro	37	Hydro	37
Cordell Hull	364612	1CORDELL H2 13.800	1	Hydro	37	Hydro	37
Cordell Hull	364613	1CORDELL H3 13.800	1	Hydro	37	Hydro	37
Cumberland	364119	1CUMBRL F1HL22.000	1	Coal	662.5	Coal	0
Cumberland	364119	1CUMBRL F1HL22.000	2	Coal	662.5	Coal	0
Cumberland	364120	1CUMBRL F2HL22.000	1	Coal	0	Coal	0
Cumberland	364120	1CUMBRL F2HL22.000	2	Coal	0	Coal	0
Cumberland	364234	1CUMBCC CT1 24.000	1	N/A	0	Natural Gas	470.12
Cumberland	364235	1CUMBCC CT2 24.000	1	N/A	0	Natural Gas	470.12
Cumberland	364236	1CUMBCC ST3 26.000	1	N/A	0	Natural Gas	324.62
Cumberland	364237	1CUMBCC ST4 26.000	1	N/A	0	Natural Gas	324.62
Dale Hollow	364614	1DALE HOL H113.800	1	Hydro	19.9	Hydro	19.9

Summer Peak 2027 & 203	35 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Dale Hollow	364615	1DALE HOL H213.800	1	Hydro	19.9	Hydro	19.9
Dale Hollow	364616	1DALE HOL H313.800	1	Hydro	19.9	Hydro	19.9
Decatur Energy Center	364731	1DEC CT1 18.000	1	Natural Gas	181.3	Natural Gas	181.3
Decatur Energy Center	364732	1DEC CT2 18.000	1	Natural Gas	181.3	Natural Gas	181.3
Decatur Energy Center	364733	1DEC CT3 18.000	1	Natural Gas	181.3	Natural Gas	181.3
Decatur Energy Center	364734	1DEC STG 18.000	1	Natural Gas	299.9	Natural Gas	299.9
Douglas	364435	1DOUGLAS H1 13.800	1	Hydro	45.82	Hydro	45.82
Douglas	364436	1DOUGLAS H2 13.800	1	Hydro	45.82	Hydro	45.82
Douglas	364437	1DOUGLAS H3 13.800	1	Hydro	45.82	Hydro	45.82
Douglas	364438	1DOUGLAS H4 13.800	1	Hydro	45.82	Hydro	45.82
East McMinnville	364904	1E MCMIN1-1213.090	1	DG	23	DG	0
Elora	364058	OELORA SOLARO.6600	1	Solar	150	Solar	150
Fontana	364439	1FONTANA H1 13.800	1	Hydro	103	Hydro	103
Fontana	364440	1FONTANA H2 13.800	1	Hydro	103	Hydro	103
Fontana	364441	1FONTANA H3 13.800	1	Hydro	103	Hydro	103
Fort Loudoun	364442	1FTLOUD H1 13.800	1	Hydro	36	Hydro	36
Fort Loudoun	364443	1FTLOUD H3 13.800	3	Hydro	45.31	Hydro	45.31
Fort Loudoun	364444	1FTLOUD H2 13.800	1	Hydro	36	Hydro	36
Fort Loudoun	364445	1FTLOUD H4 13.800	4	Hydro	45.31	Hydro	45.31
Fort Patrick Henry	364446	1FT PAT H1-213.800	1	Hydro	20.35	Hydro	20.35
Fort Patrick Henry	364446	1FT PAT H1-213.800	2	Hydro	20.35	Hydro	20.35
Gallatin	364121	1GALLATIN F124.000	1	Coal	240	Coal	240
Gallatin	364122	1GALLATIN F224.000	1	Coal	240	Coal	240
Gallatin	364123	1GALLATIN F324.000	1	Coal	281	Coal	281
Gallatin	364124	1GALLATIN F424.000	1	Coal	281	Coal	281
Gallatin	364221	1GALLATIN T113.800	1	Natural Gas	77	Natural Gas	77
Gallatin	364222	1GALLATIN T213.800	2	Natural Gas	77	Natural Gas	77
Gallatin	364223	1GALLATIN T313.800	3	Natural Gas	77	Natural Gas	77
Gallatin	364224	1GALLATIN T413.800	4	Natural Gas	77	Natural Gas	77
Gallatin	364225	1GALLATIN T513.800	5	Natural Gas	84	Natural Gas	84

Summer Peak 2027 & 2	2035 Regional SERT	P V3 Models		20	27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Gallatin	364226	1GALLATIN T613.800	6	Natural Gas	84	Natural Gas	84
Gallatin	364227	1GALLATIN T713.800	7	Natural Gas	84	Natural Gas	84
Gallatin	364228	1GALLATIN T813.800	8	Natural Gas	84	Natural Gas	84
Gleason	364231	1GLEASON T1 18.000	1	Natural Gas	171.33	Natural Gas	171.33
Gleason	364232	1GLEASON T2 18.000	2	Natural Gas	171.33	Natural Gas	171.33
Gleason	364233	1GLEASON T3 13.800	3	Natural Gas	171.33	Natural Gas	171.33
Golden Triangle 1	364067	0GN TRI SOL10.6000	1	Solar	180	Solar	180
Golden Triangle 1	364068	0G TRI BAT1 0.6000	1	Battery	50	Battery	50
Golden Triangle 1	364068	0G TRI BAT1 0.6000	Р	Battery	0	Battery	0
Golden Triangle 2	364076	0 G TRI GEN20.6300	1	Solar	135	Solar	135
Golden Triangle 2	364077	0 G TRI BAT20.6000	1	Battery	50	Battery	50
Golden Triangle 2	364077	0 G TRI BAT20.6000	Р	Battery	0	Battery	0
Graceland	364074	OGRACE SOLARO.6000	1	Solar	107	Solar	107
Great Falls	364447	1GFALLS H1-26.6000	1	Hydro	15.93	Hydro	15.93
Great Falls	364455	1GFALLS H1-26.6000	2	Hydro	19.54	Hydro	19.54
Guntersville	364448	1GUNTERSV H113.800	1	Hydro	30.13	Hydro	30.13
Guntersville	364449	1GUNTERSV H213.800	1	Hydro	30.13	Hydro	30.13
Guntersville	364450	1GUNTERSV H313.800	1	Hydro	30.13	Hydro	30.13
Guntersville	364451	1GUNTERSV H413.800	1	Hydro	30.13	Hydro	30.13
Hickory Valley	364905	1BED G1-11 4.1600	1	DG	0	DG	0
Hillsboro	364033	OHLSBRO3 SOL0.6000	1	Solar	212.9	Solar	212.9
Hiwassee	364452	1HIWASSEE H113.800	1	Hydro	87.69	Hydro	87.69
Hiwassee	364453	1HIWASSEE H213.800	1	Hydro	94.2	Hydro	94.2
Hiwassee	364453	1HIWASSEE H213.800	Р	Pumped Hydro	-93	Pumped Hydro	-93
Horus	364060	0HORS SLR 0.6300	1	Solar	42	Solar	42
John Sevier	364321	1J SEVIER C118.000	1	Natural Gas	165.57	Natural Gas	165.57
John Sevier	364322	1J SEVIER C218.000	2	Natural Gas	165.57	Natural Gas	165.57
John Sevier	364323	1J SEVIER C318.000	3	Natural Gas	165.57	Natural Gas	165.57
John Sevier	364324	1J SEVIER S419.500	4	Natural Gas	377.3	Natural Gas	377.3

Summer Peak 2027 & 20	35 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Johnsonville	364257	1JVILLE T17 13.800	1	Natural Gas	84	Natural Gas	84
Johnsonville	364258	1JVILLE T18 13.800	1	Natural Gas	84	Natural Gas	84
Johnsonville	364259	1JVILLE T19 13.800	1	Natural Gas	84	Natural Gas	84
Johnsonville	364260	1JVILLE T20 13.800	1	Natural Gas	84	Natural Gas	84
Johnsonville	364361	1JCT AERO 2113.800	21	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364362	1JCT AERO 2213.800	22	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364363	1JCT AERO 2313.800	23	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364364	1JCT AERO 2413.800	24	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364365	1JCT AERO 2513.800	25	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364366	1JCT AERO 2613.800	26	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364367	1JCT AERO 2713.800	27	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364368	1JCT AERO 2813.800	28	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364369	1JCT AERO 2913.800	29	Natural Gas	60.73	Natural Gas	60.73
Johnsonville	364370	1JCT AERO 3013.800	30	Natural Gas	60.73	Natural Gas	60.73
Kemper	364261	1KEMPER T1 13.800	1	Natural Gas	84	Natural Gas	84
Kemper	364262	1KEMPER T2 13.800	1	Natural Gas	84	Natural Gas	84
Kemper	364263	1KEMPER T3 13.800	1	Natural Gas	84	Natural Gas	84
Kemper	364264	1KEMPER T4 13.800	1	Natural Gas	84	Natural Gas	84
Kentucky	364456	1KY HYDRO H113.800	1	Hydro	45.38	Hydro	45.38
Kentucky	364457	1KY HYDRO H213.800	1	Hydro	45.38	Hydro	45.38
Kentucky	364458	1KY HYDRO H313.800	1	Hydro	45.38	Hydro	45.38
Kentucky	364459	1KY HYDRO H413.800	1	Hydro	45.38	Hydro	45.38
Kentucky	364460	1KY HYDRO H513.800	1	Hydro	45.38	Hydro	45.38
Kingston	364151	1KINGSTON F118.000	1	Coal	159.7	Coal	0
Kingston	364152	1KINGSTON F218.000	1	Coal	144	Coal	0
Kingston	364153	1KINGSTON F318.000	1	Coal	144	Coal	0
Kingston	364154	1KINGSTON F418.000	1	Coal	144	Coal	0
Kingston	364155	1KINGSTON F520.000	1	Coal	190	Coal	0
Kingston	364156	1KINGSTON F620.000	1	Coal	190	Coal	0
Kingston	364157	1KINGSTON F720.000	1	Coal	190	Coal	0

Summer Peak 2027 8	& 2035 Regional SERT	P V3 Models		20)27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Kingston	364158	1KINGSTON F820.000	1	Coal	190	Coal	0
Kingston	364159	1KINGSTON F920.000	1	Coal	203.6	Coal	0
Kingston	364371	1KIG AERO 1 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364372	1KIG AERO 2 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364373	1KIG AERO 3 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364374	1KIG AERO 4 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364375	1KIG AERO 5 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364376	1KIG AERO 6 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364377	1KIG AERO 7 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364378	1KIG AERO 8 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364379	1KIG AERO 9 13.800	1	N/A	0	Natural Gas	58.37
Kingston	364380	1KIG AERO 1013.800	1	N/A	0	Natural Gas	58.37
Kingston	364381	1KIG AERO 1113.800	1	N/A	0	Natural Gas	58.37
Kingston	364382	1KIG AERO 1213.800	1	N/A	0	Natural Gas	58.37
Kingston	364383	1KIG AERO 1313.800	1	N/A	0	Natural Gas	58.37
Kingston	364384	1KIG AERO 1413.800	1	N/A	0	Natural Gas	58.37
Kingston	364385	1KIG AERO 1513.800	1	N/A	0	Natural Gas	58.37
Kingston	364386	1KIG AERO 1613.800	1	N/A	0	Natural Gas	58.37
Kingston	364387	1KIG CT 17 24.000	1	N/A	0	Natural Gas	434.73
Kingston	364388	1KIG ST 18 26.000	1	N/A	0	Natural Gas	300.22
Kingston BESS	364046	1KING_BES 0.6300	1	N/A	N/A	Battery	103.257
Kyles Ford	364907	1KYLESF 1-114.1600	1	DG	20	DG	0
Lagoon Creek	364271	1LAG CRK T1 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364272	1LAG CRK T2 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364273	1LAG CRK T3 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364274	1LAG CRK T4 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364275	1LAG CRK T5 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364276	1LAG CRK T6 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364277	1LAG CRK T7 13.800	1	Natural Gas	85	Natural Gas	85
Lagoon Creek	364278	1LAG CRK T8 13.800	1	Natural Gas	85	Natural Gas	85

Summer Peak 2027 & 20	35 Regional SERT	P V3 Models		20	27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Lagoon Creek	364279	1LAG CRK T9 13.800	1	Natural Gas	84	Natural Gas	84
Lagoon Creek	364280	1LAG CRK T1013.800	1	Natural Gas	84	Natural Gas	84
Lagoon Creek	364281	1LAG CRK T1113.800	1	Natural Gas	84	Natural Gas	84
Lagoon Creek	364282	1LAG CRK T1213.800	1	Natural Gas	84	Natural Gas	84
Lagoon Creek	364301	1LAG CRK CT116.500	1	Natural Gas	175.22	Natural Gas	175.22
Lagoon Creek	364302	1LAG CRK CT216.500	1	Natural Gas	176.21	Natural Gas	176.21
Lagoon Creek	364303	1LAG CRK STG18.000	1	Natural Gas	238.57	Natural Gas	238.57
Latitude	364048	1LATIT SOLAR13.000	1	Solar	15	Solar	15
Magnolia	364761	1MAGNOLT1 18.000	1	Natural Gas	175.71	Natural Gas	175.71
Magnolia	364762	1MAGNOL T2 18.000	1	Natural Gas	168.48	Natural Gas	168.48
Magnolia	364763	1MAGNOL T3 18.000	1	Natural Gas	174.68	Natural Gas	174.68
Magnolia	364764	1MAGNOL S1 18.000	1	Natural Gas	155.04	Natural Gas	155.04
Magnolia	364765	1MAGNOL S2 18.000	1	Natural Gas	155.04	Natural Gas	155.04
Magnolia	364766	1MAGNOL S3 18.000	1	Natural Gas	155.04	Natural Gas	155.04
Magnolia	364036	1MAGNLIA SLR34.500	1	Solar	159	Solar	159
Marshall	364291	1MARSHALL T113.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364292	1MARSHALL T213.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364293	1MARSHALL T313.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364294	1MARSHALL T413.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364295	1MARSHALL T513.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364296	1MARSHALL T613.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364297	1MARSHALL T713.800	1	Natural Gas	85.63	Natural Gas	85.63
Marshall	364298	1MARSHALL T813.800	1	Natural Gas	85.63	Natural Gas	85.63
McKellar	364070	OMCKLLR SLR 0.6600	1	Solar	70	Solar	70
Melton Hill	364461	1MELTON H H113.800	1	Hydro	39.49	Hydro	39.49
Melton Hill	364462	1MELTON H H213.800	1	Hydro	39.74	Hydro	39.74
Millington	364055	OMILNGTN SOL0.6900	1	Solar	53	Solar	53
Millington II	364030	OMILLNGTN IIO.6900	1	Solar	53	Solar	53
Morgan Energy Center	364771	1MEC CT1 18.000	1	Natural Gas	176.48	Natural Gas	176.48
Morgan Energy Center	364772	1MEC CT2 18.000	1	Natural Gas	176.48	Natural Gas	176.48

Southeastern Regional TRANSMISSION PLANNING

Summer Peak 2027 & 20	35 Regional SERT	P V3 Models		20	27	20	35
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Morgan Energy Center	364773	1MEC CT3 18.000	1	Natural Gas	176.48	Natural Gas	176.48
Morgan Energy Center	364774	1MEC STG 18.000	1	Natural Gas	291.57	Natural Gas	291.57
Mulberry	364053	OMULB SOLAR 0.2000	1	Solar	16	Solar	16
Muscle Shoals	364057	OMUS SHL SLR0.6000	1	Solar	228.5	Solar	228.5
Nickajack	364521	1NICKAJACK 113.800	1	Hydro	30.7	Hydro	30.7
Nickajack	364522	1NICKAJACK 213.800	1	Hydro	27.31	Hydro	27.31
Nickajack	364523	1NICKAJACK 313.800	1	Hydro	26.03	Hydro	26.03
Nickajack	364524	1NICKAJACK 413.800	1	Hydro	26.08	Hydro	26.08
Normandy Lake	364031	ONORMNDY SLR0.6000	1	Solar	200	Solar	200
Norris	364465	1NORRIS H1 13.800	1	Hydro	63.47	Hydro	63.47
Norris	364466	1NORRIS H2 13.800	1	Hydro	63.47	Hydro	63.47
North Adamsville	364078	1N ADAMSVILL26.000	1	Solar	30	Solar	30
North Albertville	364910	1NALB DS#1-44.1600	1	DG	0	DG	0
Nottely	364467	1NOTTELY H1 13.800	1	Hydro	19.22	Hydro	19.22
Ocoee 1	364468	10C0EE#1H1-32.3000	1	Hydro	4.81	Hydro	4.81
Ocoee 1	364468	10C0EE#1H1-32.3000	2	Hydro	4.81	Hydro	4.81
Ocoee 1	364468	10C0EE#1H1-32.3000	3	Hydro	4.81	Hydro	4.81
Ocoee 1	364469	10C0EE#1H4-52.3000	1	Hydro	4.81	Hydro	4.81
Ocoee 1	364469	10C0EE#1H4-52.3000	2	Hydro	4.81	Hydro	4.81
Ocoee 2	364470	10COEE#2H1-26.6000	1	Hydro	10.9	Hydro	10.9
Ocoee 2	364470	1OCOEE#2H1-26.6000	2	Hydro	12.59	Hydro	12.59
Ocoee 3	364471	10COEE #3 H113.800	1	Hydro	29.3	Hydro	29.3
Okolona	364035	00KOLONA SOL0.7000	1	Solar	144	Solar	144
Old Hickory	364617	10LDHICKH1-213.800	1	Hydro	28.7	Hydro	28.7
Old Hickory	364617	10LDHICKH1-213.800	2	Hydro	29	Hydro	29
Old Hickory	364618	10LDHICKH3-413.800	1	Hydro	29	Hydro	29
Old Hickory	364618	10LDHICKH3-413.800	2	Hydro	29	Hydro	29
Optimist	364023	OOPTMST SLR 0.6300	1	Solar	140	Solar	140
Optimist	364032	00PTMST BAT 0.6000	1	Battery	50	Battery	50

Summer Peak 2027 8	k 2035 Regional SERT	P V3 Models		20	27	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Optimist	364032	00PTMST BAT 0.6000	Р	Battery	0	Battery	0
Paradise	364304	1PARADIS CT118.000	1	Natural Gas	211	Natural Gas	211
Paradise	364305	1PARADIS CT218.000	2	Natural Gas	211	Natural Gas	211
Paradise	364306	1PARADIS CT318.000	3	Natural Gas	211	Natural Gas	211
Paradise	364307	1PARADIS S1 19.000	1	Natural Gas	467.01	Natural Gas	467.01
Paradise	364308	1PARADIS CT518.000	1	Natural Gas	240	Natural Gas	240
Paradise	364309	1PARADIS CT618.000	1	Natural Gas	240	Natural Gas	240
Paradise	364310	1PARADIS CT718.000	1	Natural Gas	240	Natural Gas	240
Percy Priest	364619	1PERCY PR H113.800	1	Hydro	30	Hydro	30
Pickwick	364472	1PICKWICK H113.800	1	Hydro	43.42	Hydro	43.42
Pickwick	364473	1PICKWICK H213.800	1	Hydro	43.42	Hydro	43.42
Pickwick	364474	1PICKWICK H313.800	1	Hydro	43.42	Hydro	43.42
Pickwick	364475	1PICKWICK H413.800	1	Hydro	43.42	Hydro	43.42
Pickwick	364476	1PICKWICK H513.800	1	Hydro	43.42	Hydro	43.42
Pickwick	364477	1PICKWICK H613.800	1	Hydro	43.42	Hydro	43.42
Providence	364049	OPROV SOLAR 0.8000	1	Solar	16.1	Solar	16.1
Proxy Gen 429	364026	1TS25_429_B 0.6000	1	N/A	N/A	Battery	203.674
Proxy Gen 466	364043	1TS25_466_S 0.7000	1	N/A	N/A	Solar	200
Proxy Gen 512	364061	1TS25_512_G 0.6300	1	N/A	N/A	Solar	200
Proxy Gen 512	364061	1TS25_512_G 0.6300	2	N/A	N/A	Battery	21.735
Proxy Gen 515	364047	1TS25_515_G 0.6000	1	N/A	N/A	Solar	64.8
Proxy Gen 522	364066	1TS25_522_U10.6300	1	N/A	N/A	Solar	68.4
Proxy Gen 569	364191	1TS25_569_G113.800	1	N/A	N/A	Natural Gas	86.667
Proxy Gen 569	364192	1TS25_569_G213.800	1	N/A	N/A	Natural Gas	86.667
Proxy Gen 569	364193	1TS25_569_G313.800	1	N/A	N/A	Natural Gas	86.667
Proxy Gen 569	364194	1TS25_569_G413.800	1	N/A	N/A	Natural Gas	86.667
Proxy Gen 569	364195	1TS25_569_G513.800	1	N/A	N/A	Natural Gas	86.667
Proxy Gen 569	364196	1TS25_569_G613.800	1	N/A	N/A	Natural Gas	86.667
Proxy Gen 588	364201	1TS25_588_1 13.800	4	N/A	N/A	Natural Gas	33.333
Proxy Gen 588	364202	1TS25_588_2 13.800	5	N/A	N/A	Natural Gas	33.333

Summer Peak 2027 & 2	035 Regional SERT	P V3 Models		20	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Proxy Gen 588	364202	1TS25_588_2 13.800	6	N/A	N/A	Natural Gas	33.333
Proxy Gen 588	364203	1TS25_588_3 13.800	1	N/A	N/A	Natural Gas	33.333
Proxy Gen 588	364204	1TS25_588_4 13.800	2	N/A	N/A	Natural Gas	33.333
Proxy Gen 588	364204	1TS25_588_4 13.800	3	N/A	N/A	Natural Gas	33.333
Raccoon Mountain	364401	1RACCOON P1 23.000	1	Pumped Hydro	421	Pumped Hydro	421
Raccoon Mountain	364401	1RACCOON P1 23.000	Р	Pumped Hydro	-421	Pumped Hydro	-421
Raccoon Mountain	364402	1RACCOON P2 23.000	1	Pumped Hydro	421	Pumped Hydro	421
Raccoon Mountain	364402	1RACCOON P2 23.000	Р	Pumped Hydro	-421	Pumped Hydro	-421
Raccoon Mountain	364403	1RACCOON P3 23.000	1	Pumped Hydro	421	Pumped Hydro	421
Raccoon Mountain	364403	1RACCOON P3 23.000	Р	Pumped Hydro	-421	Pumped Hydro	-421
Raccoon Mountain	364404	1RACCOON P4 23.000	1	Pumped Hydro	421	Pumped Hydro	421
Raccoon Mountain	364404	1RACCOON P4 23.000	Р	Pumped Hydro	-421	Pumped Hydro	-421
Red Hills	364780	1REDHILLS F120.000	1	Coal	489	Coal	489
Ridgely Lake County	364044	1RIDGELY SOL34.500	1	Solar	124	Solar	124
River Bend	364054	ORIVER BEND 0.5500	1	Solar	75	Solar	75
Russellville	364040	ORUSSVIL SOLO.6000	1	Solar	156	Solar	156
Selmer Farm	364050	OSELMER FARMO.2000	1	Solar	17	Solar	17
Selmer North 1	364064	OSELMER NOR10.3900	1	Solar	16.1	Solar	16.1
Selmer North 2	364065	OSELMER NOR20.3900	1	Solar	8.5	Solar	8.5
Sequoyah	364011	1SEQUOYAH N124.000	1	Nuclear	1209.24	Nuclear	1209.24
Sequoyah	364012	1SEQUOYAH N224.000	1	Nuclear	1193.24	Nuclear	1193.24

Summer Peak 2027 & 2035 Regional SERTP V3 Models				2027		2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Shawnee	364171	1SHAWNEE F1 18.000	1	Coal	143	Coal	143
Shawnee	364172	1SHAWNEE F2 18.000	1	Coal	143	Coal	143
Shawnee	364173	1SHAWNEE F3 18.000	1	Coal	143	Coal	143
Shawnee	364174	1SHAWNEE F4 18.000	1	Coal	143	Coal	143
Shawnee	364175	1SHAWNEE F5 18.000	1	Coal	143	Coal	143
Shawnee	364176	1SHAWNEE F6 18.000	1	Coal	143	Coal	143
Shawnee	364177	1SHAWNEE F7 18.000	1	Coal	143	Coal	143
Shawnee	364178	1SHAWNEE F8 18.000	1	Coal	143	Coal	143
Shawnee	364179	1SHAWNEE F9 18.000	1	Coal	143	Coal	143
Skyhawk	364037	1SKYHAWK SOL34.500	1	Solar	100	Solar	100
South Holston	364478	1SHOLSTON H113.800	1	Hydro	44.37	Hydro	44.37
Southaven	364791	1S HAVEN T1 18.000	1	Natural Gas	190.18	Natural Gas	190.18
Southaven	364792	1S HAVEN T2 18.000	3	Natural Gas	186.75	Natural Gas	186.75
Southaven	364793	1S HAVEN T3 18.000	5	Natural Gas	189.04	Natural Gas	189.04
Southaven	364794	1S HAVEN S1 13.800	2	Natural Gas	118.01	Natural Gas	118.01
Southaven	364795	1S HAVEN S2 13.800	4	Natural Gas	118.01	Natural Gas	118.01
Southaven	364796	1S HAVEN S3 13.800	6	Natural Gas	118.01	Natural Gas	118.01
Spring Valley	364034	OSPR VLY SOLO.6000	1	Solar	216	Solar	216
Tate & Lyle	364901	1TATE&L 1-1213.800	1	DG	0	DG	0
Tims Ford	364479	1TIMSFORD H113.800	1	Hydro	40.05	Hydro	40.05
Vonore BESS	364071	1VONORE BESS13.800	1	Battery	20	Battery	20
Vonore BESS	364071	1VONORE BESS13.800	Р	Battery	0	Battery	0
Watauga	364480	1WATAUGA H1 13.800	1	Hydro	37.86	Hydro	37.86
Watauga	364481	1WATAUGA H2 13.800	1	Hydro	32	Hydro	32
Watts Bar	364021	1WBNP N1 24.000	1	Nuclear	1324.1	Nuclear	1324.1
Watts Bar	364022	1WBNP N2 24.000	2	Nuclear	1293.89	Nuclear	1293.89
Watts Bar	364482	1WBHP H1 13.800	1	Hydro	39.24	Hydro	39.24
Watts Bar	364483	1WBHP H2 13.800	1	Hydro	39.24	Hydro	39.24
Watts Bar	364484	1WBHP H3 13.800	1	Hydro	39.24	Hydro	39.24
Watts Bar	364485	1WBHP H4 13.800	1	Hydro	39.24	Hydro	39.24

Summer Peak 2027 & 2035 Regional SERTP V3 Models				20	027	2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Watts Bar	364486	1WBHP H5 13.800	1	Hydro	39.24	Hydro	39.24
Weyerhaeuser	364911	1WEYERHSR G113.800	1	Biomass	27.56	Biomass	27.56
Weyerhaeuser	364912	1WEYERHSR G213.800	2	Biomass	27.57	Biomass	27.57
Weyerhaeuser	364913	1WEYERHSR G313.800	3	Biomass	0	Biomass	0
Weyerhaeuser	364913	1WEYERHSR G313.800	4	Biomass	0	Biomass	0
Wheeler	364650	1WHEELER 1-213.800	1	Hydro	36.62	Hydro	36.62
Wheeler	364650	1WHEELER 1-213.800	2	Hydro	36.62	Hydro	36.62
Wheeler	364651	1WHEELER 3-413.800	1	Hydro	36.62	Hydro	36.62
Wheeler	364651	1WHEELER 3-413.800	2	Hydro	36.62	Hydro	36.62
Wheeler	364652	1WHEELER 5-613.800	1	Hydro	36.62	Hydro	36.62
Wheeler	364652	1WHEELER 5-613.800	2	Hydro	36.62	Hydro	36.62
Wheeler	364653	1WHEELER 7-813.800	1	Hydro	36.62	Hydro	36.62
Wheeler	364653	1WHEELER 7-813.800	2	Hydro	36.62	Hydro	36.62
Wheeler	364654	1WHEELER 9 13.800	1	Hydro	36.62	Hydro	36.62
Wheeler	364655	1WHEELER 10 13.800	2	Hydro	36.62	Hydro	36.62
Wheeler	364656	1WHEELER 11 13.800	3	Hydro	36.62	Hydro	36.62
Wilbur	364492	1WILBUR H1-32.3000	1	Hydro	1.5	Hydro	1.5
Wilbur	364492	1WILBUR H1-32.3000	2	Hydro	1.5	Hydro	1.5
Wilbur	364492	1WILBUR H1-32.3000	3	Hydro	1.5	Hydro	1.5
Wilbur	364493	1WILBUR H4 2.3000	1	Hydro	7.2	Hydro	7.2
Wildberry	364056	OWILDBRY SOL0.8000	1	Solar	15	Solar	15
Wilson	364494	1WILSON H1-212.000	1	Hydro	22.5	Hydro	22.5
Wilson	364494	1WILSON H1-212.000	2	Hydro	22.8	Hydro	22.8
Wilson	364495	1WILSON H3-412.000	1	Hydro	23	Hydro	23
Wilson	364495	1WILSON H3-412.000	2	Hydro	22.3	Hydro	22.3
Wilson	364496	1WILSON H5-612.000	1	Hydro	30.6	Hydro	30.6
Wilson	364496	1WILSON H5-612.000	2	Hydro	30.43	Hydro	30.43
Wilson	364497	1WILSON H7-812.000	1	Hydro	29.3	Hydro	29.3
Wilson	364497	1WILSON H7-812.000	2	Hydro	30.9	Hydro	30.9
Wilson	364498	1WILSON 9-1013.800	1	Hydro	30	Hydro	30

Summer Peak 2027 & 2035 Regional SERTP V3 Models				2027		2035	
Plant	Bus Number	Bus Name	Id	Fuel Type	Pmax (MW)	Fuel Type	Pmax (MW)
Wilson	364498	1WILSON 9-1013.800	2	Hydro	29.7	Hydro	29.7
Wilson	364499	1WILSON11-1213.800	1	Hydro	29.8	Hydro	29.8
Wilson	364499	1WILSON11-1213.800	2	Hydro	29.5	Hydro	29.5
Wilson	364500	1WILSON13-1413.800	1	Hydro	29.6	Hydro	29.6
Wilson	364500	1WILSON13-1413.800	2	Hydro	29.6	Hydro	29.6
Wilson	364501	1WILSON15-1613.800	1	Hydro	29.23	Hydro	29.23
Wilson	364501	1WILSON15-1613.800	2	Hydro	29.23	Hydro	29.23
Wilson	364502	1WILSON17-1813.800	1	Hydro	29.01	Hydro	29.01
Wilson	364502	1WILSON17-1813.800	2	Hydro	29.03	Hydro	29.03
Wilson	364503	1WILSON H19 13.800	1	Hydro	54.97	Hydro	54.97
Wilson	364504	1WILSON H20 13.800	1	Hydro	56.06	Hydro	56.06
Wilson	364505	1WILSON H21 13.800	1	Hydro	54.97	Hydro	54.97
Windrock	364915	1WINDROCK WG0.6900	1	Wind	0	Wind	0
Wolf Creek	364620	1WOLFCR H1-213.800	1	Hydro	52	Hydro	52
Wolf Creek	364620	1WOLFCR H1-213.800	2	Hydro	52	Hydro	52
Wolf Creek	364621	1WOLFCR H3-413.800	1	Hydro	52	Hydro	52
Wolf Creek	364621	1WOLFCR H3-413.800	2	Hydro	52	Hydro	52
Wolf Creek	364622	1WOLFCR H5-613.800	1	Hydro	52	Hydro	52
Wolf Creek	364622	1WOLFCR H5-613.800	2	Hydro	52	Hydro	52